Skip to main content
Log in

Lioptilodes friasi (Lepidoptera: Pterophoridae) Niche Breadth in the Chilean Mediterranean Matorral Biome: Trophic and Altitudinal Dimensions

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Understanding the factors driving the diet breadth of phytophagous insects remains one of the main questions in ecological research. In this study we explored the diet breadth and plant-insect associations in the plume moth Lioptilodes friasi Vargas & Parra (Lepidoptera: Pterophoridae). This phytophagous insect was originally described in association with a single host species, Haplopappus foliosus (Asteraceae), a native shrub of the Chilean Mediterranean matorral. In order to address the breadth of host plant choice, we surveyed other Haplopappus species growing along the elevation gradient of central Chile from sea level to 2600 m. We were able to obtain L. friasi adults from five additional Haplopappus species: Haplopappus chrysantemifolius and Haplopappus decurrens from the coastal zone, Haplopappus multifolius and Haplopappus schumanii from the mid-elevation zone, and Haplopappus scrobiculatus at high elevation. Our results demonstrate that the genus-specialized endophagous herbivore L. friasi has a wider distribution and climatic tolerance than previously described. Its biogeographical range extends from the lowland coastal habitats up to the Andean subnival level. We propose that shared flower phenotypic traits such as morphology and chemical composition may have allowed the colonization of closely related Haplopappus species in central Chile, the expansion of which is limited by the harsh high elevation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2

Similar content being viewed by others

References

  • Ødegaard F (2000) How many species of arthropods? Erwin’s estimate revised. Biol J Linn Soc Lond 71:583–597

  • Agosta SJ (2006) On ecological fitting, plant-insect associations, herbivore host shifts, and host plant selection. Oikos 114:556–565

    Article  Google Scholar 

  • Ali JG, Agrawal A (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302

    Article  CAS  PubMed  Google Scholar 

  • Almeida AM, Fonseca CR, Prado PI, Almeida-Neto M, Diniz S, Kubota U, Braun MR, Raimundo RLG, Anjos LA, Mendonça TG, Futada SM, Lewinsohn TM (2006) Assemblages of endophagous insects on Asteraceae in São Paulo Cerrados. Neotrop Entomol 35:458–468

    Article  PubMed  Google Scholar 

  • Andrade B, Hidalgo R (1996) La zona costera y los instrumentos de planificación territorial: Litoral de la Provincia de Petorca. Rev. Geogr. Chile Terra Australis 41:111–120

    Google Scholar 

  • Andrew ME, Wulder MA, Coops NC, Baillargeon G (2012) Beta-diversity gradients of butterflies along productivity axes. Glob Ecol Biogeogr 21:352–364

  • Armesto J, Arroyo MTK, Hinojosa LF (2007) The Mediterranean environment of Central Chile. In: Veblen TT, Young KR, Orme AR (eds) The physical geography of South America. Oxford University Press, New York, pp 184–199

    Google Scholar 

  • Arroyo MT, Armesto JJ, Villagran C (1981) Plant phenological patterns in the high Andean Cordillera of Central Chile. J Ecol 69:205–223

    Article  Google Scholar 

  • Arroyo MT, Primack R, Armesto J (1982) Community studies in pollination ecology in the high temperate Andes of Central Chile. I. Pollination mechanisms and altitudinal variation. Am J Botany 69:82–97

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16

  • Bates D, Maechler M, Ben B, Walker S (2015) Fitting linear mixed-effects models using lme4 J stat soft 67:1-48

  • Bernays EA (1999) Plasticity and the problem of choice in food selection. Ann Entomol Soc Am 92:944–951

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution trends Ecol Evol

  • Bush GL (1969) Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae). Evolution 23:237–251

    Article  PubMed  Google Scholar 

  • Bush GL (1992) Host race formation and sympatric speciation in Rhagoletis fruit flies (Diptera: Tephritidae). Psyche 99:335–357

    Article  Google Scholar 

  • Cavieres L, Peñaloza A, Arroyo M (2000) Altitudinal vegetation belts in the high-Andes of central Chile (33 S). Rev Chil Hist Nat 73:331–344

    Article  Google Scholar 

  • Connor EF, Taverner MP (1997) The evolution and adaptive significance of the leaf-mining habit. Oikos 79:6–25

    Article  Google Scholar 

  • Di Castri F, Hajek ER (1976) Bioclimatografía de Chile. Ediciones Universidad Católica de Chile, Santiago, p 225

    Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Erwin TL (1982) Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopt Bull 36:74–75

  • Forister ML, Novotny V, Panorska AK, Baje L, Basset Y, Butterill PT, Cizek L, Coley PD, Dem F, Diniz IR, Drozd P, Fox M, Glassmire AE, Hazen R, Hrcek J, Jahner JP, Kaman O, Kozubowski TJ, Kursar TA, Lewis OT, Lill J, Marquis RJ, Miller SE, Morais HC, Murakami M, Nickel H, Pardikes NA, Ricklefs RE, Singer MS, Smilanich AM, Stiremant JO, Villamarín-Cortez S, Vodka S, Volf M, Wagner DL, Walla T, Weiblen GD, Dyer LA (2015) The global distribution of diet breadth in insect herbivores Proc Natl Acad Sci USA 112:442–447

  • Fox CW, Lalond RG (1993) Host confusion and the evolution of insect diet breadths. Oikos 67:577–581

    Article  Google Scholar 

  • Frei ER, Hahn T, Ghazoul J, Pluess AR (2014) Divergent selection in low and high elevation populations of a perennial herb in the Swiss Alps. Alp Bot 124:131–142

  • Frías D (2005) Trupanea simpatrica a new species of Tephritinae (Diptera: Tephritidae) infesting an endemic Haplopappus hybrid (Asteraceae) in Chile. Acta Entomol Chilena 29:13–45

    Google Scholar 

  • Gajardo R (1994) La Vegetación Natural de Chile. Clasificación y Distribución Geográfica. Editorial Universitaria, Santiago, p 165

    Google Scholar 

  • Gielis C (1991) A taxonomic review of the Pterophoridae (Lepidoptera) from Argentina and Chile. Zool Verhandel 269:1–164

    Google Scholar 

  • Gielis C (2006) Review of the Neotropical species of the family Pterophoridae, part I: Ochyrocticinae, Deuterocopinae, Pterophorinae (Platyptiliini, Exelastini, Oxyptilini) (Lepidoptera). Zool Meded 80:1–290

    Google Scholar 

  • Gielis C (2014) Review of the Neotropical species of the family Pterophoridae, part 5: additions from Peru, Ecuador, Colombia, Venezuela and the Guyanas (Lepidoptera). Bol SEA 55:67–91

    Google Scholar 

  • Hall H (1928) The genus Haplopappus, a phylogenetic study in the Compositae. Carnegie Institution of Washington, Washington D.C., p 365

  • Hardy NB, Otto SP (2014) Specialization and generalization in the diversification of phytophagous insects: tests of the musical chairs and oscillation hypotheses. Proc Roy Soc B 281:2013–2960

    Article  Google Scholar 

  • Heard SB (2012) Use of host-plant trait space by phytophagous insects during host-associated differentiation: the gape-and-pinch model. Int J Ecol 2012:192345

    Article  Google Scholar 

  • Herde M, Howe GA (2014) Host plant-specific remodeling of midgut physiology in the generalist insect herbivore Trichoplusia ni. Insect Biochem Mol Biol 50:58–67

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513

    Article  PubMed  Google Scholar 

  • Kaminski LA, Freitas AVL (2010) Natural history and morphology of immature stages of the butterfly Allosmaitia strophius (Godart) (Lepidoptera: Lycaenidae) on flower buds of Malpighiaceae. Stud Neotrop Fauna E 45:11–19

    Article  Google Scholar 

  • Klingenberg L (2007) Monographie der südamerikanischen Gattungen Haplopappus Cass. Und Notopappus L. Klingenberg (Asteraceae-Astereae). Series Bibliotheca Botanica, Heft, Schweizerbartsche Verlagsbuchhandlung, Berlin, p 331

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol & Evol 22:569–574

    Article  Google Scholar 

  • Korner-Nievergelt F, Roth T, von Felten S, Guelat J, Almasi B, Korner-Nievergelt P (2015) Bayesian data analysis in ecology using linear models with R, BUGS and Stan. Elsevier, Amsterdam, Netherlands

  • Larsson S, Ekbom B (1995) Oviposition mistakes in herbivorous insects: confusion or a step towards a new host plant? Oikos 72:155–160

    Article  Google Scholar 

  • Lawton JH, MacGarvin M, Heads PA (1987) Effects of altitude on the abundance and species richness of insect herbivores on bracken. J Anim Ecol 56:147–160

  • Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile, Primera edn. Editorial Universitaria, Universidad de Chile, Santiago de Chile. Chile

    Google Scholar 

  • Mader BJ, Daoust SP, Cardinal-Aucoin M, Bauce E, Despland E (2012) Larval experience induces adult aversion to rearing host plants: a novel behaviour contrary to Hopkins’ host selection principle. Ecol Entomol 37:204–211

    Article  Google Scholar 

  • Matthews DH, Lott TA (2005) Larval host plants of the Pterophoridae (Lepidoptera: Pterophoridae). Mem Am Entomol Inst 76:1–324

    Google Scholar 

  • Matthews DH, Pérez ME (2014) Description of the natural history and immature stages of Postplatyptilia caribica Gielis in Puerto Rico (Lepidoptera: Pterophoridae). Zootaxa 3821:363–372

    Article  PubMed  Google Scholar 

  • Matthews DL, Miller JY, Simon MJ, Goss G (2012) Observations of plume moths on North Andros Island, Bahamas, and notes on new records and species previously recorded from the Bahamas (Lepidoptera: Pterophoridae). Insecta Mundi 236:1–12

    Google Scholar 

  • Matsubayashi KW, Ohshima I, Nosil P (2010) Ecological speciation in phytophagous insects. Entomol Exp Appl 134:1–27

    Article  Google Scholar 

  • Menéndez R, Thomas CD (2000) Metapopulation structure depends on spatial scale in the host-specific moth Wheeleria spilodactylus (Lepidoptera: Pterophoridae). J Anim Ecol 69:935–951

    Article  Google Scholar 

  • Mopper S (2005) Phenology—how time creates spatial structure in endophagous insect populations. Ann Zool Fenn 42:327–333

    Google Scholar 

  • Moreira-Muñoz A (2011) Plant geography of Chile. In: MJA W (ed) Plant and vegetation series Vol 5. Springer, Berlin, pp 3–45

    Google Scholar 

  • Muñoz-Schick M, Moreira A, Villagrán C, Luebert F (2000) Caracterización florística y pisos de vegetación en los Andes de Santiago, Chile Central. Bol Mus Nac Hist Nat Chile 49:9–50

    Google Scholar 

  • Parsons DJ, Parsons BY (1976) Vegetation structure in the Mediterranean scrub communities of California and Chile. J Ecol 64:435–447

    Article  Google Scholar 

  • Pellissier L, Fiedler K, Ndribe C, Dubuis A, Pradervand J-N, Guisan A, Rasmann S (2012) Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol Evol 2:1818–1825

  • Rasmann S, Alvarez N, Pellissier L (2014a) The altitudinal niche-breadth hypothesis in insect-plant interactions. Annual Plant Reviews 47:339–360

  • R: A language and environment for statistical computing (2015) R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

  • Sandre S-L, Kaasik A, Eulitz U, Tammaru T (2013) Phenotypic plasticity in a generalist insect herbivore with the combined use of direct and indirect cues. Oikos 122:1626–1635

    Article  Google Scholar 

  • Scheidel U, Röhl S, Bruelheide H (2003) Altitudinal gradients of generalist and specialist herbivory on three montane Asteraceae. Acta Oecol 24:275–283

    Article  Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect–plant biology. Second. Oxford University Press, Oxford, p 421

    Google Scholar 

  • Singer MS, Stireman JO (2005) The tri-trophic niche concept and adaptive radiation of phytophagous insects. Ecol Lett 8:1247–1255

    Article  Google Scholar 

  • Strong DR (1979) Biogeographic dynamics of insect-host plant communities. Annu Rev Entomol 24:89–119

    Article  Google Scholar 

  • Strong DR, Lawton JH, Southwood R (1984) Insects on plants: community patterns and mechanisms. Blackwell Scientific, Oxford, p 313

    Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. The University of Chicago Press, Chicago, p 400

    Google Scholar 

  • Vargas HA (2010) A new species of Lioptilodes Zimmerman (Lepidoptera, Pterophoridae) from northern Chile. Rev Bras Entomol 54:428–430

    Article  Google Scholar 

  • Vargas HA, Parra LE (2005) Una nueva especie de Lioptilodes Zimmerman (Lepidoptera: Pterophoridae) de Chile. Neotrop Entomol 34:403–406

    Google Scholar 

  • Villa-Correa A (2015) Influencia del hospedero en el tamaño corporal y la morfología genital de Lioptilodes friasi (Lepidoptera: Pterophoridae). Master thesis, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile, p 66

  • Villagra CA, Astudillo-Meza A, Urzúa A (2014) Differences in arthropods found in flowers versus trapped in plant resins on Haplopappus platylepis Phil. (Asteraceae): can the plant discriminate between pollinators and herbivores? Arthropod Plant Interact 8:411–419

    Article  Google Scholar 

  • Ward LK, Hackshaw A, Clarke RT (2003) Do food-plant preferences of modern families of phytophagous insects and mites reflect past evolution with plants? Biol J Linn Soc 78:51–83

    Article  Google Scholar 

Download references

Acknowledgments

We thank Professor Rodrigo Villaseñor and Dr. Rosita Scherson for plant identification. We are also grateful to Marcela Cordero, Pedro Mendez, Camila Gonzalez, Alvaro Astudillo, Alvaro Villa, Constanza Schapheer, and Angelos Katsanis for help during field and laboratory work, two anonymous reviewers for valuable suggestions on a preliminary version, and Lafayette Eaton for checking the English. This research was funded by FONDECYT Iniciación No. 11100109, CONICYT, Inserción No. 79100013 to CAV, and a CNIC-NSF No. 1404687 grant to SR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor A. Vargas.

Additional information

Edited by André VL Freitas - UNICAMP

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas, H.A., Rasmann, S., Ramirez-Verdugo, P. et al. Lioptilodes friasi (Lepidoptera: Pterophoridae) Niche Breadth in the Chilean Mediterranean Matorral Biome: Trophic and Altitudinal Dimensions. Neotrop Entomol 47, 62–68 (2018). https://doi.org/10.1007/s13744-017-0514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-017-0514-2

Keywords

Navigation