Skip to main content
Log in

Status of Resistance of Bemisia tabaci (Hemiptera: Aleyrodidae) to Neonicotinoids in Iran and Detoxification by Cytochrome P450-Dependent Monooxygenases

  • Pest Management
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Nine Bemisia tabaci (Gennadius) populations were collected from different regions of Iran. In all nine populations, only one biotype (B biotype) was detected. Susceptibilities of these populations to imidacloprid and acetamiprid were assayed. The lethal concentration 50 values (LC50) for different populations showed a significant discrepancy in the susceptibility of B. tabaci to imidacloprid (3.76 to 772.06 mg l−1) and acetamiprid (4.96 to 865 mg l−1). The resistance ratio of the populations ranged from 9.72 to 205.20 for imidacloprid and 6.38 to 174.57 for acetamiprid. The synergistic effects of piperonylbutoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) were evaluated for the susceptible (RF) and resistant (JR) populations for the determination of the involvement of cytochrome P450-dependent monooxygenase and carboxylesterase, respectively, in their resistance mechanisms. The results showed that PBO overcame the resistance of the JR population to both imidacloprid and acetamiprid, with synergistic ratios of 72.7 and 106.9, respectively. Carboxylesterase, glutathione S-transferase and cytochrome P450-dependent monooxygenase were studied biochemically, for the purpose of measuring the activity of the metabolizing enzymes in order to determine which enzymes are directly involved in neonicotinoid resistance. There was an increase in the activity of cytochrome P450-dependent monooxygenase up to 17-fold in the resistant JR population (RR = 205.20). The most plausible activity of cytochrome P450-dependent monooxygenase correlated with the resistances of imidacloprid and acetamiprid, and this suggests that cytochrome P450-dependent monooxygenase is the only enzyme system responsible for neonicotinoid resistance in the nine populations of B. tabaci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  • Basit M, Sayyed AH, Saleem MA, Saeed S (2011) Cross-resistance, inheritance and stability of resistance to acetamiprid in cotton whitefly, Bemisia tabaci Genn. Homoptera: Aleyrodidae. Crop Prot 30:705–712

    Article  CAS  Google Scholar 

  • Basit M, Saeed S, Saleem MA, Sayyed AH (2013) Can resistance in Bemisia tabaci (Homoptera: Aleyrodidae) be overcome with mixtures of neonicotinoids and insect growth regulators? Crop Prot 44:135–141

    Article  CAS  Google Scholar 

  • Bedford ID, Briddon RW, Brown JK, Rosell RC, Markham PG (1994) Geminivirus transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Ann Appl Biol 125:311–325

    Article  Google Scholar 

  • Bernard CB, Philogene BJ (1993) Insecticide synergists: role, importance and perspectives. J Toxicol Environ Health 38:199–223

    Article  CAS  PubMed  Google Scholar 

  • Bohloolzadeh M, Talebijahromi K, Hosseininaveh V (2012) Evaluation of susceptibility of three populations of the cotton whitefly to imidacloprid and amitraz. Iran J Plant Prot Sci 43:345–356 (in Persian with English summary)

    Google Scholar 

  • Cahill M, Gorman K, Day S, Denholm I, Elbert A, Nauen R (1996) Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae). Bull Entomol Res 86:343–349

    Article  CAS  Google Scholar 

  • Cenis JL, Perez P, Fereres A (1993) Identification of aphid (Homoptera: Aphididae) species and clones by random amplified polymorphic DNA. Ann Entomol Soc Am 86:545–550

    Article  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772. doi:10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennehy TJ, Wigert M, Li X, Williams L (1999) Arizona whitefly susceptibility to insect growth regulators and chloronicotinyl insecticides: 1998 season summary. University of Arizona Cotton Report. University of Arizona Cooperative Extension, pp 376–391

  • Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro P (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196–208

    Article  Google Scholar 

  • Elbert A, Nauen R (2000) Resistance of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids. Pest Manag Sci 56:60–64

    Article  CAS  Google Scholar 

  • Gorman K, Slater R, Blande JD, Clarke A, Wren J, Mccaffery A, Denholm I (2010) Cross-resistance relationships between neonicotinoids and pymetrozine in Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci 66:1186–1190

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Guirao P, Beitia F, Cenis JL (1997) Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera:Aleyrodidae). Bull Entomol Res 87:587–593

    Article  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1976) Glutathione S-transferase AA from rat liver. Arch Biochem Biophys 175:710–716

    Article  CAS  PubMed  Google Scholar 

  • Haley TJ (1978) PBO, a [2-(2-butoxyethoxy) ethoxy]-4, 5-methylenedioxy-2-propyltoluene: a review of the literature. Ecotoxicol Environ Safety 2:9–31

    Article  CAS  PubMed  Google Scholar 

  • Hemingway J, Karunaratne SH (1998) Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med Vet Entomol 12:1–12

    Article  CAS  PubMed  Google Scholar 

  • Horowitz AR, Kontsedalov S, Ishaaya I (2004) Dynamic of resistance to the neonicotinoids, acetamiprid and thiamethoxam, in Bemisia tabaci (Homoptera: Aleyrodidae). J Econ Entomol 97:2051–2056

    Article  CAS  PubMed  Google Scholar 

  • James DG, Price TS (2002) Fecundity in twospotted spider mite (Acari: Tetranychidae) is increased by direct and systemic exposure to imidacloprid. J Econ Entomol 95:729–732

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Kim YH, Lee HJ, Kim BJ, Lim KJ, Lee SH (2012) One-step identification of B and Q biotypes of Bemisia tabaci based on intron variation of carboxylesterase 2. J Asia Pac Entomol 15:383–388

    Article  CAS  Google Scholar 

  • Karunker I, Benting J, Lueke B, Ponge T, Nauen R, Roditakis E, Vontas J, Gorman K, Denholm I, Morin S (2008) Over-expression of cytochrome P450 Cyp6cm1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem Mol Biol 38:634–644

    Article  CAS  PubMed  Google Scholar 

  • Kranthi KR (2005) Insecticide resistance- monitoring, mechanism and management manual. Central Institute for Cotton Research, India, p 153

    Google Scholar 

  • Kristensen M (2005) Glutathione S-transferase and insecticide resistance in laboratory strains and field populations of Musca domestica. J Econ Entomol 98:1341–1348

    Article  CAS  PubMed  Google Scholar 

  • LeOra Software (2007) Polo plus: a user’s guide to probit or logit analysis, version 2.0. LeOra Software Company, Petaluma

    Google Scholar 

  • Li AY, Dennehy TJ, Li X, Wigert ME (2000) Susceptibility of Arizona whiteflies to chloronicotinyl insecticides and IGR’s: new developments in the 1999 season. Proceedings Beltwide Cotton Conferences. National Cotton Council, Memphis, pp 1325–1330

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Luo C, Jones CM, Devine G, Zhang F, Denholm I, Gorman K (2010) Insecticides resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. Crop Prot 29:429–434

    Article  CAS  Google Scholar 

  • Markussen MDK, Kristensen M (2010) Cytochrome P450 monooxygenase-mediated neonicotinoid resistance in the house fly Musca domestica L. Pestic Biochem Physiol 98:50–58

    Article  CAS  Google Scholar 

  • McKenzie CL, Hodges G, Osborne LS, Byrne FJ, Shatters RG (2009) Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in Florida – investigating the Q invasion. J Econ Entomol 102:670–676

    Article  CAS  PubMed  Google Scholar 

  • Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Insect Biochem Physiol 58:200–215

    Article  CAS  PubMed  Google Scholar 

  • Nauen R, Koob B, Kluver T, Elbert A (1997) Biochemical characterization of insecticide resistant strains of the tobacco whitefly Bemisia tabaci (Homoptera: Aleyrodidae). Mittlg Dtsch Gesellsch Allg Angew Entomol 11:217–222

    Google Scholar 

  • Nauen R, Stumpf N, Elbert A (2002) Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci 58:868–875

    Article  CAS  PubMed  Google Scholar 

  • Polson KA, Brogdon WG, Rawlins SC, Chadee DD (2011) Characterization of insecticide resistance in Trinidadian strains of Aedes aegypti mosquitoes. Acta Trop 117:31–38

    Article  CAS  PubMed  Google Scholar 

  • Prabhaker N, Castle S, Henneberry TJ, Toscano NC (2005) Assessment of cross-resistance potential to neonicotinoid insecticides in Bemisia tabaci (Hemiptera:Aleyrodidae). Bull Entomol Res 95:535–543

    Article  CAS  PubMed  Google Scholar 

  • Prapanthadara LA, Hemingway J, Ketterman AJ (1993) Partial purification and characterization of glutathione S-transferase involved in DDT resistance from the mosquito Anopheles gambiae. Pestic Biochem Physiol 47:119–133

    Article  CAS  Google Scholar 

  • Puinean AM, Foster SP, Oliphant L, Denholm I, Field LM, Millar NS, Williamson MS, Bass C (2010) Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid myzus persicae. PLoS Genet 6:1–11

    Article  Google Scholar 

  • Rajaei Shoorcheh H, Kazemi B, Manzari S, Brown JK, Sarafrazi A (2008) Genetic variation and mtCOI phylogeny for Bemisia tabaci (Hemiptera, Aleyrodidae) indicate that the ‘B’ biotype predominates in Iran. J Pest Sci 81:199–206

    Article  Google Scholar 

  • Rao Q, Xu YH, Luo C, Zhang HY, Jones CM, Devine GJ, Gorman K, Denholm I (2012) Characterisation of neonicotinoid and pymetrozine resistance in strains of Bemisia tabaci (Hemiptera: Aleyrodidae) from China. J Integr Agr 11:321–326

    Article  CAS  Google Scholar 

  • Rauch N, Nauen R (2003) Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Arch Insect Biochem Physiol 54:165–176

    Article  CAS  PubMed  Google Scholar 

  • Robertson JL, Preisler HK (1992) Pesticide bioassays with arthropods. CRC Press, Inc., Boca Raton, p 127

    Google Scholar 

  • Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott JG (1999) Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol 29:757–777

    Article  CAS  PubMed  Google Scholar 

  • Scott JG, Wen Z (2001) Cytochromes P450 of insects: the tip of the iceberg. Pest Manag Sci 57:958–967

    Article  CAS  PubMed  Google Scholar 

  • Shahbazi M, Behjatnia SA, Alichi M, Bananej K, Izadpanah K (2014) Biotypes of Bemisia tabaci (Genn.) from Fars province. Iran J Plant Prot Sci 45:201–211 (in Persian with English summary)

    Google Scholar 

  • Sharma RK, Singh S, Kumar R, Pandher S (2013) Status of insecticide resistance in whitefly Bemisia tabaci. Ann Entomol 30:113–127

    Google Scholar 

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. Ann Entomol Soc Am 87:651–701

    Article  CAS  Google Scholar 

  • Stumpf N, Nauen R (2002) Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pestic Biochem Physiol 72:111–121

    Article  CAS  Google Scholar 

  • Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364

    Article  CAS  PubMed  Google Scholar 

  • Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268

    Article  CAS  PubMed  Google Scholar 

  • Valverde RA, Sim J, Lotrakul P (2004) Whitefly transmission of plant viruses. Virus Res 100:123–128

    Article  CAS  PubMed  Google Scholar 

  • Van Asperen K (1962) A study of housefly esterase by means of sensitive colorimetric method. J Insect Physiol 8:401–416

    Article  CAS  Google Scholar 

  • Van de Baan HE, Croft BA (1990) Factors influencing insecticide resistance in Psylla pyricola (Homoptera: Psyllidae) and susceptibility in the predator Deraeocoris brevis (Heteroptera: Miridae). Environ Entomol 19:1223–1228

    Article  Google Scholar 

  • Vontas JG, Small GJ, Hemingway J (2001) Glutathione S-transferases as antioxidant defense agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J 357:65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokomi RK, Hoelmer KA, Osborne LS (1990) Relationships between the sweet-potato whitefly and the squash silverleaf disorder. Phytopathology 80:895–900

    Article  Google Scholar 

  • Yu SJ, Nguyen SN (1992) Detection and biochemical characterization of insecticide resistance in the diamondback moth. Pestic Biochem Physiol 44:74–81

    Article  CAS  Google Scholar 

  • Zewen L, Zhaojun H, Yinchang W, Lingchun Z, Hongwei Z, Chengjun L (2003) Selection for imidacloprid resistance in Nilaparvata lugens: cross-resistance patterns and possible mechanisms. Pest Manag Sci 59:1355–1359

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank MA Samih for helping to collect the susceptible population, Giah Company for providing the technical grade insecticides used in this study. The authors also appreciate the help extend by Satnam Singh, Raman fellow, Department of Entomology, KY, USA, for improving the manuscript. This project was supported by Iran National Science Foundation grant No. 92031897.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Talebi.

Additional information

Edited by Raúl N Guedes – UFV

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basij, M., Talebi, K., Ghadamyari, M. et al. Status of Resistance of Bemisia tabaci (Hemiptera: Aleyrodidae) to Neonicotinoids in Iran and Detoxification by Cytochrome P450-Dependent Monooxygenases. Neotrop Entomol 46, 115–124 (2017). https://doi.org/10.1007/s13744-016-0437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-016-0437-3

Keywords

Navigation