Skip to main content

Advertisement

Log in

Leaf Beetle (Chrysomelidae: Coleoptera) Assemblages in a Mosaic of Natural and Altered Areas in the Brazilian Cerrado

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

In landscape mosaics, species may use different vegetation types or be restricted to a single vegetation type or land-use feature highlighting the importance of the interaction of species requirements and environmental heterogeneity. In these systems, the determination of the overall pattern of β-diversity can indicate the importance of the environmental heterogeneity on diversity patterns. Here, we evaluate leaf beetles (Coleoptera: Chrysomelidae) as habitat quality bioindicators in a system with varying intensities of human impacts and different phyto-physiognomies (from open field to forests). We collected 1117 leaf beetles belonging to 245 species, of which 12 species and 5 genus were considered possible bioindicators based on IndVal measures. Higher species richness was observed in forests and regenerating fields, and habitats with lower species richness included pastures, mines, and veredas. Natural fields, regenerating fields, natural cerrado, and forest had higher values of β-diversity. Bioindicator systems that include not only species richness and abundance but also assemblage composition are needed to allow for a better understanding of Chrysomelidae response to environmental disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8

Similar content being viewed by others

References

  • Baldi A (2003) Using higher taxa as surrogates of species richness: a study based on 3700 Coleoptera, Diptera, and Acari species in Central-Hungarian reserves. Basic Appl Ecol 4:589–593

    Article  Google Scholar 

  • Balmford A, Green MJB, Murray MG (1996) Using higher-taxon richness as a surrogate for species richness 1. Regional tests. Proc R Soc B 263:1267–1274

    Article  Google Scholar 

  • Barbosa VS, Leal IR, Iannuzzi L, Cortez-Almeida J (2005) Distribution pattern of herbivorous insects in a remnant of Brazilian Atlantic forest. Neotrop Entomol 34:701–711

    Article  Google Scholar 

  • Bestelmeyer BT, Wiens JA (2001) Ant biodiversity in semiarid landscape mosaics: the consequences of grazing vs. natural heterogeneity. Ecol Appl 11(4):1123–1140

    Article  Google Scholar 

  • Bonvicino C, Cerqueira R, Soares VA (1996) Habitat use by small mammals of upper Araguaia River. Rev Bras Biol 56:761–767

    Google Scholar 

  • Borges FJA, Marini MA (2010) Birds nesting survival in disturbed and protected Neotropical savannas. Biol Conserv 19:223–236

    Google Scholar 

  • Bridgewater S, Ratter JA, Ribeiro JF (2004) Biogeographic patterns, beta diversity and dominance in the cerrado biome of Brazil. Biodivers Conserv 13:2295–2318

    Article  Google Scholar 

  • Brown KS Jr (1997) Diversity, disturbance, and sustainable use of Neotropical forests: insects as indicators for conservation monitoring. J Insect Conserv 1:25–42

    Article  Google Scholar 

  • Brown Jr KS (1991) Conservation of neotropical environments: insects as indicators. In: Collins NM, Thomas JA (Eds.) The conservation of insects and their habitats. Academic Press, 349–404 p

  • Cardoso P, Silva I, De Oliveira NG, Serrano ARM (2004) Indicator taxa of spider (Araneae) diversity and their efficiency in conservation. Biol Conserv 120:517–524

    Article  Google Scholar 

  • Carvalho FMV, De Marco JP, Ferreira LG (2009) The Cerrado into-pieces: habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biol Conserv 142:1392–1403

    Article  Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Econ Lett 8:148–159

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Austral Ecol 18:117–143

    Article  Google Scholar 

  • Colwell RK (2005) Estimates: statistical estimation of species richness and shared species from samples. Version 7.5.6.0b1

  • Coppolillo P, Gomez H, Maisels F, Wallace R (2004) Selection criteria for suites of landscape species as a basis for site-based conservation. Biol Conserv 115:419–430

    Article  Google Scholar 

  • Costa Lima ADA (1955) Insetos do Brasil: Coleopteros. Rio de Janeiro, Escola Nacional de Agronomia, Série Didática No 9, Tomo 7, 372p

  • Deloach CJ, Lewis PA, Herr JC, Carruthers RI, Tracy JL, Johnson J (2003) Host specificity of the leaf beetle, Diorhabda elongata deserticola (Coleoptera: Chrysomelidae) from Asia, a biological control agent for saltcedars (Tamarix: Tamaricaceae) in the Western United States. Biol Control 27:117–147

    Article  Google Scholar 

  • Delprete PG (2007) New combinations and new synonymies in the genus Spermacoce (Rubiaceae) for the flora of Goiás and Tocantins (Brazil) and the flora of the Guianas. J Bot Res Inst Tex 1:1023–1030

    Google Scholar 

  • Diniz JAF, De Marco JP, Hawkins BA (2010a) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Diver 3:172–179

    Google Scholar 

  • Diniz S, Prado PI, Lewinsohn TM (2010b) Species richness in natural and disturbed habitats: Asteraceae and flower-head insects (Tephritidae: Diptera). Neotrop Entomol 39:163–171

    Article  PubMed  Google Scholar 

  • Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366

    Google Scholar 

  • Faith DP, Minchin PR, Bwlbin L (2004) Compositional dissimilarity as a robust measure of ecological distance. Plant Ecol 69:57–89

    Article  Google Scholar 

  • FAO, Food And Agriculture Organization Of The United Nations (2009) Pests of selected forest tree species. Global review of forest pests and diseases. Roma, 142–173 p

  • Felfili JM, Felfili MC (2001) Diversidade Alfa e Beta no Cerrado sensu stricto da Chapada Pratinha, Brasil. Acta Bot Bras 15:243–254

    Article  Google Scholar 

  • Fernandez P, Hilker M (2007) Host plant location by Chrysomelidae. Basic Appl Ecol 8:97–116

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • Flowers RW, Janzen DH (1997) Feeding records of Costa Rican leaf beetle (Coleoptera: Chrysomelidae). Fla Entomol 80:334–366

    Article  Google Scholar 

  • Freitas FAD, Zanuncio TV, Lacerda MC, Zanuncio JC (2002) Fauna de Coleoptera coletada com armadilhas luminosas em plantio de Eucalyptus grandis em Santa Bárbara, Minas Gerais. Rev Árvore 26:505–511

    Article  Google Scholar 

  • Furth DG (1989) Metafemoral springs studies of some Neotropical Genera of Alticinae. Entomography 6:497–510

    Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Halffter G (1998) A strategy for measuring landscape biodiversity. Biol Int 38:3–17

    Google Scholar 

  • Hall SL, Barney RJ (2010) A quantitative method for assigning abundance classifications to leaf beetle (Coleoptera: Chrysomelidae) in Kentucky. Nat Areas J 30:95–105

    Article  Google Scholar 

  • Heino J, Soininen J (2007) Are higher taxa adequate surrogates for species-level assemblage patterns and species richness in stream organisms? Biol Conserv 137:78–89

    Article  Google Scholar 

  • Heltshe JF, Forrester NE (1983) Estimating species richness using the jackknife procedure. Biometrics 39:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hilty J, Merelender A (2000) Faunal indicator taxa selection for monitoring ecosystem health. Biol Conserv 92:185–197

    Article  Google Scholar 

  • Hoffmann BD, Andersen AN (2003) Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral Ecol 28:444–464

    Article  Google Scholar 

  • Hughes RG (1986) Theories and models of species abundance. Am Nat 128:879–899

    Article  Google Scholar 

  • Hutcheson J (1990) Characterization of terrestrial insect communities using quantified, Malaise-trapped Coleoptera. Ecol Entomol 15:143–151

    Article  Google Scholar 

  • Hutchinson GE, MacArthur RH (1959) A theoretical ecological model of size distributions among species of animals. Am Nat 93:117–125

    Article  Google Scholar 

  • Iannuzzi L, Maia ACD, Nobre CEB, Muniz FJDA (2003) Padroes locais de diversidade de Coleoptera (Insecta) em vegetação de Caatinga. Ecologia e Conservação da Caatinga. Editora Universitária UFPE, Recife, pp 367–390

    Google Scholar 

  • Jolivet PH (1992) Insects and plants: parallel evolution and adaptations. Sandhill Crane Press

  • Jolivet PH, Verma KK (2002) Biology of leaf beetles. Intercept Ltd, USA, Andover

    Google Scholar 

  • Khan SA (2006) Is species level identification essential for environmental impact studies? Curr Sci 91:29–34

    Google Scholar 

  • Kitching RL, Orr AG, Thalib L, Mitchell H, Hopkins MS, Graham AW (2000) Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest. J Appl Ecol 37:284–297

    Article  Google Scholar 

  • Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713

    Article  Google Scholar 

  • Konstantinov AS, Vandenberg NJ (1996) Handbook of Palearctic Flea Beetles (Coleoptera: Chrysomelidae: Alticini). Associated Publishers

  • Law BS, Dickman CR (1998) The use of habitat mosaics by terrestrial vertebrate fauna: implications for conservation and management. Biodivers Conserv 7:323–333

    Article  Google Scholar 

  • Lawton JH, Bignell DE, Bolton B, Bloemers GF, Eggleton P, Hammond RM, Hodda M, Holt RD, Larsen TB, Mawdley NA, Stork NE, Srivastava DS, Watt AD (1998) Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391

  • Linzmeier AM, Ribeiro-Costa CS, Marinoni RC (2006) Fauna de Alticini (Newman)(Coleoptera, Chrysomelidae, Galerucinae) em diferentes estágios sucessionais na Floresta com Araucária do Paraná, Brasil: diversidade e estimativa de riqueza de espécies. Rev Bras Entomol 50(1):101–109

    Article  Google Scholar 

  • Manly BFJ (1994) Multivariate statistical method: a primer. Chapman & Hall, London, 224p

    Google Scholar 

  • Marinoni RC, Ganho NG (2006) Beta differential diversity of Coleoptera (Insecta) in an anthropized landscape of the Bioma Araucaria. Rev Bras Entomol 50:64–71

    Article  Google Scholar 

  • Marinoni RC, Ganho NG, Monné ML, Mermudes, JRM (2001) Hábitos alimentares em Coleoptera ( Insecta). Ribeirão Preto Editora Holos (2a ed), 63p

  • Martin TG, Mcintyre S, Catterall CP, Possingham HP (2006) Is landscape context important for riparian conservation? Birds in grassy woodland. Biol Conserv 127(2):201–214

    Article  Google Scholar 

  • Mata RA, McGeoch M, Tidon R (2008) Drosophilid assemblages as a bioindicator system of human disturbance in the Brazilian Savanna. Biodivers Conserv 17:2899–2916

    Article  Google Scholar 

  • Matioli JC (1986) Armadilhas luminosas: uma tentativa no controle de pragas. Informe Agropecuário 12:36–38

    Google Scholar 

  • Maurer D (2000) The dark side of taxonomic sufficiency (TS). Mar Pollut Bull 40:98–101

    Article  CAS  Google Scholar 

  • McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev 73:181–201

    Article  Google Scholar 

  • McGeoch MA (2007) In: Stewart AJA, Nw TR, Lewis OT (eds) Insects and bioindication: theory and progress. Insect Conservation Biology CABINoth American Office, Cambridge, pp 144–174

    Google Scholar 

  • McGeoch MA, Chown SL (1998) Scaling up the value of bioindicators. Trends Ecol Evol 13:47

    Article  Google Scholar 

  • McGeoch MA, Rensburg BJV, Botes A (2002) The verification and application of bioindicators: a case study of dung beetles in a savanna ecosystem. J Appl Ecol 39:661–672

    Article  Google Scholar 

  • Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. Plant Ecol 69:107

    Article  Google Scholar 

  • MMA/SBF (2002) Biodiversidade Brasileira: Avaliação e identificação de áreas e ações prioritárias para conservação, utilização sustentável e repartição dos benefícios da biodiversidade nos biomas brasileiros. Brasília-DF, Ministério do Meio Ambiente

  • Novotny V, Miller SE, Basset Y, Cizek L, Drozd P, Darrow K, Leps J (2002) Predictably simple: assemblages of caterpillars (Lepidoptera) feeding on rainforest trees in Papua New Guinea. Proc B 269:2337–2344

    Google Scholar 

  • Odegaard F (2006) Host specificity, alpha- and beta-diversity of phytophagous beetles in two tropical forests in Panama. Biodivers Conserv 15:83–105

    Article  Google Scholar 

  • Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lachavanne JB (2002) Does size matter? The relationship between pond area and biodiversity. Biol Conserv 104:59–70

    Article  Google Scholar 

  • Ohmart CP, Edwards PB (1991) Insect herbivory on Eucalyptus. Annu Rev Entomol 36:637

    Article  Google Scholar 

  • Pearson DL (1994) Selecting indicator taxa for the quantitative assessment of biodiversity. Philos Trans B 345:75–79

    Article  CAS  Google Scholar 

  • Peterson AT, Soberon J, Sanchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267

    Article  CAS  PubMed  Google Scholar 

  • Pettis GV, Bramam SK (1979) Effect of temperature and host plant on survival and development of Altica litigata Fall. J Entomol Sci 42:66–73

    Google Scholar 

  • Pinheiro F, Diniz IR, Kitayama K (1998) Comunidade local de Coleoptera em Cerrado: diversidade de espécies e tamanho do corpo. An Soc Entomol Bras 27:543–550

    Article  Google Scholar 

  • Pinheiro F, Diniz IR, Coelho D, Bandeira MPS (2002) Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol 27:132–136

    Article  Google Scholar 

  • Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230

    Article  Google Scholar 

  • Ratter JA, Bridgewater S, Ribeiro JF (2003) Analysis of the floristic composition of the Brazilian cerrado vegetation III: comparison of the woody vegetation of 376 area. EJB 60:57–109

    Google Scholar 

  • Ribeiro JF, Walter BMT (1998) Fitofisionomias do Bioma Cerrado. In: Sano, SM, Almeida SPD. (Eds.). Planaltina-DF, Embrapa Cerrado Ambiente e Flora, 87–166 p

  • Rolstad J, Gjerde I, Gundersen VS, Saeterdal M (2002) Use of indicator species to assess forest continuity: a critique. Conserv Biol 16:253–257

    Article  Google Scholar 

  • Sanderson EW, Redford KH, Chetkiewicz CB, Medellin RA, Rabinowitz AR, Robinson JG, Taber AB (2002) Planning to save a species: the jaguar as a model. Conserv Biol 16(1):58

    Article  Google Scholar 

  • Sano EE, Barcellos AO, Bezerra HS (2001) Assessing the spatial distribution of cultivated pastures in the Brazilian savanna. Pasturas Tropicales 22:2–15

    Google Scholar 

  • Santiago-Blay JA (2004) Leaf-mining chrysomelids. In: Jolivet PH, Santiago_Blay JA, Schimitt M (eds) New developments on the biology of Chrysomelidae. SPB Academy Publishing, Hague, pp 1–84

    Google Scholar 

  • Santos GP, Zanuncio JC, Oliveira HGD, Zanuncio TV, Lacerda MC (2003) Coleoptera collected in a plantation of eucalyptus urophylla S. T., Blake (Myrtaceae) in the region of Niquelândia, States of Goiás, Brazil. J Biosci 19:77–82

    Google Scholar 

  • Silva JF, Fariñas MR, Felfili JM, Klink CA (2006) Spatial heterogeneity, land use and conservation in the cerrado region of Brazil. J Biogeogr 33:536–548

    Article  Google Scholar 

  • Silva DP, De Marco JP, Resende DC (2010) Adult odonate abundance and community assemblage measures as indicators of stream ecological integrity: a case study. Ecol Indic 10:744–752

    Article  CAS  Google Scholar 

  • Simberloff D (1998) Flagships, umbrellas, and keystones: is single-species management passe in the landscape era. Biol Conserv 83:247–257

    Article  Google Scholar 

  • Solorio AB, Rosales SA (2004) Los crisomelinos (Coleoptera: Chrysomelidae: Chrysomelinae) del estado de Morelos. Acta Zool Mex 20:39–66

    Google Scholar 

  • Staines CL, Staines SL (1998) The leaf beetle (Insecta: Coleoptera: Chrysomelidae): potential indicator species assemblages for natural area monitoring. In: Theres, GD (Ed.), Conservation of biological diversity: a key to the restoration of the Chesapeake Bay and beyond Maryland department of natural resources. Annapolis, Maryland, 233–244 p

  • Strauss YS, Morrow PA (1988) Movement patterns of an Australian chrysomelid beetle in a stand of two Eucalyptus host species. Oecology 77:231–237

    Article  Google Scholar 

  • Townes HA (1972) A light-weight Malaise trap Entomoll News 239–247

  • Van Rensburg B, Mcgeoch MA, Chown SL, Jaarsveld AS (1999) Conservation of heterogeneity among dung beetles in the Maputaland Centre of Endemism. Biol Conserv 88:145–153

    Article  Google Scholar 

  • Villasenor JL, Ibarra-Manriquez G, Meave JÁ, Ortiz E (2005) Higher taxa as surrogates of plant biodiversity in a megadiverse country. Conserv Biol 19:232–238

    Article  Google Scholar 

  • Wiens JA (2000) Ecological heterogeneity: an ontogeny of concepts and approaches. In: Hutchings MJ, Jonh EA, Stewart AJA (eds) The ecological consequences of environmental heterogeneity. Blackwell Science, Cambridge, pp 9–31

    Google Scholar 

Download references

Acknowledgments

MP was supported by a Conselho Nacional de Pesquisa (CNPq) fellowship during this work, and PDM received continuous support from a CNPq productivity grant. This project was supported in part by the FUNAPE and ANGLO AMERICAN BRASIL partnership.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P De Marco Jr.

Additional information

Edited by Wesley AC Godoy -- ESALQ/USP

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimenta, M., De Marco, P. Leaf Beetle (Chrysomelidae: Coleoptera) Assemblages in a Mosaic of Natural and Altered Areas in the Brazilian Cerrado. Neotrop Entomol 44, 242–255 (2015). https://doi.org/10.1007/s13744-015-0280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-015-0280-y

Keywords

Navigation