Skip to main content
Log in

Effects of White Grubs on Soil Water Infiltration

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Water infiltration rates k were measured in mesocosms with soil and “white grubs” of Ancognatha falsa (Arrow) (Coleoptera: Melolonthidae). Three third instars of A. falsa and three adult earthworms Pontoscolex corethrurus were selected, weighted, and introduced into the mesocosms setting three treatments: soil + A. falsa, soil + P. corethrurus, and control (soil without any macroorganism). The experiment had a completely random design with four replicates per treatment (n = 4). The infiltration rates of soil matrix were assessed in each mesocosms with a minidisk tension infiltrometer. Six measurements were made along the experiment. Results showed that larvae of A. falsa promoted a higher water infiltration in the soil, compared to the control. On day 7, k values were similar among treatments, but k values after 28 days and up to 100 days were much higher in the A. falsa treatment (k = 0.00025 cm s−1) if compared to control (k = 0.00011 cm s−1) and P. corethrurus (k = 0.00008 cm s−1) treatments. The k values were significantly higher in the presence of larvae of A. falsa compared to the control and P. corethrurus treatments. The larvae of A. falsa are potential candidates for new assays on soil water infiltration with different tensions to evaluate the role of pores and holes created by the larvae on soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

  • Angulo Jaramillo R, Vandervaere JP, Roulier S, Thony JL, Gaudet JP, Vauclin M (2000) Field measurement of soil hydraulic properties by disc and ring infiltrometers, a review and recent developments. Soil Till Res 55:1–29

    Article  Google Scholar 

  • Aragón GA, Nochebuena Trujillo CD, Morón MA, López-Olguín JF (2008) Uso de trampas de luz fluorescente para el manejo de la gallina ciega (Coleoptera: Melolonthidae) en maíz (Zea mays L.). Agrociencia 42:217–223

    Google Scholar 

  • Archer NAL, Quinton JN, Hess TM (2002) Below-ground relationships of soil texture, roots and hydraulic conductivity in two-phase mosaic vegetation in South-east Spain. J Arid Environ 52:535–553

    Article  Google Scholar 

  • Barois I, Lavelle P, Toutain F, Villemin G (1993) Transformation of the soil structure trough Pontoscolex corethrurus (Oligochaeta) intestinal tract. Geoderma 56:57–66

    Article  Google Scholar 

  • Barros E, Grimaldi M, Sarrazin M, Chauvel A, Mitja D, Desjardins T, Lavelle P (2004) Soil physical degradation and changes in macrofaunal communities in Central Amazon. Appl Soil Ecol 26:157–168

    Article  Google Scholar 

  • Bastardie F, Cannavacciuolo M, Capowiez Y, De Dreuzy JR, Bellido A, Cluzeau D (2002) A new simulation for modelling the topology of earthworm burrow systems and their effects on macropore flow in experimental soils. Biol Fert Soil 36:161–169

    Article  Google Scholar 

  • Blanchart E, Lavelle P, Braudeau E, LeBissonnais Y, Valentin C (1997) Regulation of soil structure by geophagous earthworm activities in humid savannas of Côte d’Ivoire. Soil Biol Biochem 29:431–439

    Article  CAS  Google Scholar 

  • Bouma J (1991) Influence of soil macroporosity on environmental quality. Adv Agron 46:1–37

    Article  Google Scholar 

  • Brown GG, Oliveira LJ, Norton D, Alberton O, Brandão Jr O, Saridakis GP, Torres E (2003) Quantifying scarab beetle-grub holes and their volume as affected by different tillage and crop management systems. In Proc. 16th ISTRO Conference, Australia: 213–218

  • Brown J, Scholtz CH, Janeau JL, Grellier S, Podwojewski P (2010) Dung beetles (Coleoptera: Scarabaeidae) can improve soil hydrological properties. Appl Soil Ecol 46(1):9–16

    Article  Google Scholar 

  • Castro Ramírez AE, Perales Rivera HR, Parra Tabla V (2006) Propuesta metodológica para la evaluación del daño ocasionado por “gallina ciega” (Coleoptera) al maíz (Zea mays L.). In: Castro Ramírez AE, Morón MA, Aragón A (eds) Diversidad, importancia y manejo de escarabajos edafícolas. ECOSUR, Fundación PRODUCE Chiapas, BUAP, Puebla, pp 163–180

    Google Scholar 

  • Colloff MJ, Pullen KR, Cunningham SA (2010) Restoration of an ecosystem function to revegetation communities: the role of invertebrate macropores in enhancing soil water infiltration. Restor Ecol 18:65–72

    Article  Google Scholar 

  • De la Rosa Flores IN, Negrete Yankelevich S (2012) Distribución espacial de la fauna edáfica en bosque mesófilo, bosque secundario y pastizal en la reserva La Cortadura, Coatepec, Veracruz. Rev Mex Biodiv 83:201–215

    Google Scholar 

  • Decagon-Devices (2006) Mini disk infiltrometer: Model S, user’s manual versión 3. Decagon Devices, Pullman

    Google Scholar 

  • Edwards WM, Shipitalo MJ, Owens LB, Norton LD (1990) Effects of Lumbricus terrestris burrows on hydrology of continuous no-till corn fields. Geoderma 46:73–84

    Article  Google Scholar 

  • Eldridge DJ (1993) Effects of ants on sandy soils in semi-arid eastern Australia 1. Local distribution of nest entrances and their effect on infiltration of water. Aust J Soil Res 31(4):509–518

    Article  Google Scholar 

  • Fatehnia M, Tawfiq K, Abichou T (2014) Comparison of the methods of hydraulic conductivity estimation from mini disk infiltrometer. EJGE 19:1047–1063

    Google Scholar 

  • García JA, Fragoso C (2003) Influence of different food substrates on growth and reproduction of two tropical earthworm species (Pontoscolex corethrurus and Amynthas corticis). Pedobiologia 47:754–763

    Google Scholar 

  • Gómez Tagle A, Gutiérrez Gnecchi JA, Zepeda Castro H (2010) Dispositivo de automatización para un infiltrómetro de campo con funcionamiento de Mariotte. Terra Latinoamericana 28(3):193–202

    Google Scholar 

  • Hallaire V, Curmi P, Duboisset A, Lavelle P, Pashanasi B (2000) Soil structure changes induced by the tropical earthworm Pontoscolex corethrurus and organic inputs in a Peruvian ultisol. Eur J Soil Biol 36:35–44

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957

    Article  Google Scholar 

  • Lavelle P, Barois I, Cruz I, Fragoso C, Hernandez A, Pineda A, Rangel P (1987) Adaptive strategies of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta), a peregrine geophagous earthworm of the humid tropics. Biol Fert Soil 5(3):188–194

    Article  Google Scholar 

  • Lavelle P, Bignell DE, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Logsdon SD, Jaynes DB (1993) Methodology for determining hydraulic conductivity with tension infiltrometers. Soil Sci Soc Am J 57:1426–1431

    Article  Google Scholar 

  • Luque JL, Peinemann N (1995) Conductividad hidráulica en suelos vérticos del Valle inferior del Río Ciibut frente a la aplicación de diferentes enmiendas. Ciencia del Suelo 13:70–75

    Google Scholar 

  • Meysman FJR, Middelburg JJ, Heip CHR (2006) Bioturbation: a fresh look at Darwin’s last idea. Trends Ecol Evol 21:688–695

    Article  PubMed  Google Scholar 

  • Morón MA (2001) Larvas de escarabajos del suelo en México (Coleoptera: Melolonthidae). Acta Zool Mex (n e) 1:111–130

    Google Scholar 

  • Morón Ríos A (2008) Litter consumption by Xyloryctes lobicollis (Bates) (Coleoptera: Scarabaeidae: Dynastinae) larvae and its contribution to soil nutrients. Coleopts Bull 62:331–332

    Article  Google Scholar 

  • Morón MA, Ratcliffe BC, Deloya C (1997) Atlas de los escarabajos de México. Coleoptera: lamelicornia. Vol. I. Familia melolonthidae. Rutelinae, dynastinae, cetoniinae, trichiinae, valginae y melolonthinae. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad y Sociedad Mexicana de Entomología, Xalapa

    Google Scholar 

  • Muñoz Hernández A, Morón MA, Aragón A (2008) Coleoptera Scarabaeoidea de la región de Teziutlán, Puebla, México. Acta Zool Mex (n s) 24:55–78

    Google Scholar 

  • Neita Moreno JC, Morón MA (2008) Estados inmaduros de Ancognatha ustulata (coleoptera: melolonthidae: dynastinae: cyclocephalini). Rev Mex Biodiv 79:355–361

    Google Scholar 

  • Nuutinen V, Pitkanen J, Kuusela E, Widbom T, Lohilahti H (1998) Spatial variation of an earthworm community related to soil properties and yield in a grass-clover field. Appl Soil Ecol 8:85–94

    Article  Google Scholar 

  • Pitkanen J, Nuutinen V (1998) Earthworm contribution to infiltration and surface runoff after 15 years of different soil management. Appl Soil Ecol 9:411–415

    Article  Google Scholar 

  • Reynolds WD, Elrick DE (1991) Determination of hydraulic conductivity using a tension infiltrometer. Soil Sci Soc Am J 55:633–639

    Article  Google Scholar 

  • Romero López AA, Morón MA, Aragón A, Villalobos FJ (2010) La “gallina ciega” (Coleoptera: Scarabaeoidea: Melolonthidae) vista como un “ingeniero del suelo”. Southwest Entomol 35:331–343

    Article  Google Scholar 

  • Romero López AA, Negrete Yankelevich S, De la Rosa I, Geissert D (2012) Presencia de “gallinas ciegas“(Coleoptera: Scarabaeoidea: Melolonthidae) en el bosque mesófilo y su distribución espacial en un pastizal. Southwest Entomol 37(3):419–422

    Article  Google Scholar 

  • Shipitalo MJ, Le Bayon RC (2004) Quantifying the effects of earthworms on soil aggregation and porosity. In: Edwards CA (ed) Earthworm ecology. CRC Press, Boca Raton, pp 183–200

    Chapter  Google Scholar 

  • Tapia Rojas AM, Morón MA, Aragón A, López Olguín JF (2003) Determinación de melolonthidae (Insecta: coleoptera) en algunos suelos forestales del estado de puebla, México. In: Aragón A, Morón MA, Marín-Jarillo A (eds) Estudios sobre coleópteros del suelo en América. Pub. especial BUAP, Puebla, pp 129–135

    Google Scholar 

  • Topoliantz S, Ponge JF (2003) Burrowing activity of the geophagous earthworm Pontoscolex corethrurus (Oligochaeta: Glossoscolecidae) in the presence of charcoal. Appl Soil Ecol 23:267–271

    Article  Google Scholar 

  • Villalobos FJ (1994) The contribution of Melolonthid larvae to soil fertility. Proc. 15th World Congress of Soil Science IVd: 129–143

  • Willoughby GL, Kladivko EJ (2002) Water infiltration rates following reintroduction of Lumbricus terrestris into no-till fields. J Soil Water Conserv 57(2):82–88

    Google Scholar 

  • Yan Li X, González A, Solé Benet A (2005) Laboratory methods for the estimation of infiltration rate of soil crusts in the Tabernas Desert badlands. Catena 60:255–266

    Article  Google Scholar 

  • Zapata Sierra A, Manzano Agugliaro F (2008) Influencia de seis especies arbóreas en la infiltración de agua en el suelo. Agrociencia 42:835–845

    Google Scholar 

  • Zhang R (1997) Infiltration models for the disk infiltrometer. Soil Sci Soc Am J 61:1597–1603

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank S. Rocha, N. Portilla, L. Cruz and V. Méndez, A. Santos, and M. de los Santos (INECOL) for their support in soil analysis and experimental logistics and SEP-CONACyT for the financial support and a Postdoc scholarship under the project no. 106788.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A Romero-López.

Additional information

Edited by Kleber Del Claro – UFU

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-López, A.A., Rodríguez-Palacios, E., Alarcón-Gutiérrez, E. et al. Effects of White Grubs on Soil Water Infiltration. Neotrop Entomol 44, 134–139 (2015). https://doi.org/10.1007/s13744-015-0273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-015-0273-x

Keywords

Navigation