Skip to main content

Advertisement

Log in

Effective ultrasound-assisted removal of heavy metal ions As(III), Hg(II), and Pb(II) from aqueous solution by new MgO/CuO and MgO/MnO2 nanocomposites

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A series of new (MgO) x CuO and (MgO) x MnO2 nanocomposites were prepared and used as adsorbent for removal of As3+, Hg2+, and Pb2+ ions from aqueous solution with high capacity and detection limit. These nanocomposites were synthesized with different molar ratios by sonochemical method in alkaline solution using polyvinylpyrrolidone as a capping agent and were characterized by FTIR, AAS, UV–Vis spectroscopy, and TEM and SEM imaging. The maximum heavy metal ions adsorption was achieved for (MgO)0.32CuO and (MgO)2.9MnO2 nanocomposites assisted by 3-min sonication using ultrasound. Adsorbent capacity of (MgO)0.32CuO reached 500.0 mg/g and detection limit was 0.1 ppb for As3+. Also (MgO)2.9MnO2 nanocomposite adsorbed 457.1 mg/g of Hg2+ and 461.2 mg/g of Pb2+. Extremely low detection limits of 1.5 and 2.0 ppb were obtained for Hg(II) and Pb(II) ions, respectively, which are much lower than the WHO allowable limits. So, these nanocomposites should be excellent candidate for heavy metal removal with advantage of high capacity, high sensitivity, cost effectiveness and easy preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Rahmani, H.Z. Mousavi, M. Fazli, Effect of nanostructure alumina on adsorption of heavy metals. Desalination 253, 94–100 (2010)

    Article  CAS  Google Scholar 

  2. L.X. Yang, Y.J. Zhu, H. Tong, W. Wang, Submicrocubes and highly oriented assemblies of MnCO3 synthesized by ultrasound agitation method and their thermal transformation to nanoporous Mn2O3. Ultrason. Sonochem. 14, 259–265 (2007)

    Article  Google Scholar 

  3. Q. Oua, L. Zhoua, S. Zhaob, H. Genga, J. Haoa, Y. Xua, H. Chena, X. Chena, Self-templated synthesis of bifunctional Fe3O4@MgSiO3 magnetic sub-microspheres for toxic metal ions removal. Chem. Eng. J. 180, 121–127 (2012)

    Article  Google Scholar 

  4. P. Mondal, C.B. Majumder, B. Mohanty, Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J. Hazard. Mater. B 137, 464–479 (2006)

    Article  CAS  Google Scholar 

  5. B.K. Mandal, K.T. Suzuki, Arsenic round the world: a review. Talanta 58, 201–235 (2002)

    Article  CAS  Google Scholar 

  6. Q. Li, W. Tang, S. Gao, J.K. Shang, Arsenic (III, V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. J. Hazard. Mater. 192, 131–138 (2011)

    Article  Google Scholar 

  7. D. Gibicar, M. Horvat, M. Logar, V. Fajon, I. Falnoga, R. Ferrara, E. Lanzillotta, C. Ceccarini, B. Mazzolai, B. Denby, J. Pacyna, Human exposure to mercury in the vicinity of chlor-alkali plant. Environ. Res. 109, 355–367 (2009)

    Article  CAS  Google Scholar 

  8. D. Karunasagar, M. Krishna, Y. Anjaneyulu, J. Arunachalam, Studies of mercury pollution in a lake due to a thermometer factory situated in a tourist resort: kodaikkanal, India. Environ. Pollut. 143, 153–158 (2006)

    Article  CAS  Google Scholar 

  9. F. Zahir, S.J. Rizwi, S.K. Haq, R.H. Khan, Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 20, 5 (2005)

    Article  Google Scholar 

  10. L. Donga, Z. Zhua, Y. Qiub, J. Zhaoa, Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent. Chem. Eng. J. 165, 827–834 (2010)

    Article  Google Scholar 

  11. World Health Organization, Guidelines for Drinking-Water Quality, vol. 11. (WHO Press, Switzerland, 2008), p. 1

  12. M.J. Gonzalez Munoz, M.A. Rodriguez, S. Luque, J.R. Alvarez, Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration. Desalination 200, 742–744 (2006)

    Article  CAS  Google Scholar 

  13. H.M. Baker, A.M. Massadeh, H.A. Younes, Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods. Environ. Monit. Assess. 157, 319–330 (2009)

    Article  CAS  Google Scholar 

  14. M.G. Khedr, Nanofiltration and low energy reverse osmosis for rejection of radioactive isotopes and heavy metal cations from drinking water sources. Desalin. Water. Treat. 2, 342–350 (2009)

    Article  CAS  Google Scholar 

  15. USEPA, Arsenic occurrence in public water supplies, in EPA-815-R-00-023 (Washington, DC, 2000)

  16. D. Mohan, C.U. Pittman, Arsenic removal from water/wastewater using adsorbents—a critical review. J. Hazard. Mater. 142, 1–53 (2007)

    Article  CAS  Google Scholar 

  17. M. Kobya, E. Demirbas, E.I.M. Senturk, Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour. Technol. 96, 4 (2005)

    Article  Google Scholar 

  18. J.U.K. Oubagaranadin, Z.V.P. Murthy, Adsorption of divalent lead on a montmorillonite−illite type of clay. Ind. Eng. Chem. Res. 48, 10627–10636 (2009)

    Article  CAS  Google Scholar 

  19. S. Sun, L. Wang, A. Wang, Adsorption properties of crosslinked carboxymethyl-chitosan resin with Pb(II) as template ions. J. Hazard. Mater. 136(3), 930–937 (2006)

    Article  CAS  Google Scholar 

  20. X. Wang, Y. Zheng, A. Wang, Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites. J. Hazard. Mater. 168, 970–977 (2009)

    Article  CAS  Google Scholar 

  21. C. Gao, W. Zhang, H. Li, Z. Xu, Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water. Cryst. Growth Des. 8, 3785–3790 (2008)

    Article  CAS  Google Scholar 

  22. J. Lee, S. Mahendra, P.J.J. Alvarez, Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations. ACS Nano 4, 3580–3590 (2010)

    Article  CAS  Google Scholar 

  23. Z. Ren, G. Zhang, J.P. Chen, Adsorptive removal of arsenic from water by an iron–zirconium binary oxide adsorbent. J. Colloid. Interface Sci. 358, 230–237 (2011)

    Article  CAS  Google Scholar 

  24. Z. Xu, Q. Li, S. Gao, J.K. Shang, As(III) removal by hydrous titanium dioxide prepared from one-step hydrolysis of aqueous TiCl4 solution. Water Res. 44, 5713–5721 (2010)

    Article  CAS  Google Scholar 

  25. A. Cao, J.D. Monnell, C. Matranga, J. Wu, L. Cao, D. Gao, Hierarchical nanostructured copper oxide and its application in arsenic removal. J. Phys. Chem. C 111, 18624–18628 (2007)

    Article  CAS  Google Scholar 

  26. W. Yantasee, C.L. Warner, T. Sangvanich, R.S. Addleman, T.G. Carter, R.J. Wiacek, G.E. Fryxell, C. Timchalk, M.G. Warner, Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ. Sci. Technol. 41, 5114–5119 (2007)

    Article  CAS  Google Scholar 

  27. K.P. Lisha, S.M. Maliyekkal, T. Pradeep, Manganese dioxide nanowhiskers: a potential adsorbent for the removal of Hg(II) from water. Chem. Eng. J. 160, 432–439 (2010)

    Article  CAS  Google Scholar 

  28. B.Y. Song, Y. Eom, T.G. Lee, Removal and recovery of mercury from aqueous solution using magnetic silica nanocomposites. Appl. Surf. Sci. 257, 4754–4759 (2011)

    Article  CAS  Google Scholar 

  29. S. Recillas, A. Garcia, E. Gonzalez, E. Casals, V. Puntes, X. Font, A. Sanchez, Use of CeO2, TiO2 and Fe3O4 nanoparticles for the removal of lead from water: toxicity of nanoparticles and derived compounds. Desalination 227, 213–220 (2011)

    Article  Google Scholar 

  30. J. Wang, S. Zheng, Y. Shao, J. Liu, D. Zhu, Z. Xu, Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J. Colloid. Interface Sci. 349, 293–299 (2010)

    Article  CAS  Google Scholar 

  31. M.A. Karimi, S.H. Roozbahani, R. Asadiniya, A. HatefiMehrjardi, M.H. Mashhadizadeh, R. Behjatmanesh-Ardakani, M. Mazloum-Ardakani, H. Kargar, S.M. Zebarjad, Synthesis and characterization of nanoparticles and nanocomposite of ZnO and MgO by sonochemical method and their application for zinc polycarboxylate dental cement preparation. Int. Nano Lett. 1, 43–51 (2011)

    CAS  Google Scholar 

  32. H. Chen, J. He, Facile synthesis of monodisperse manganese oxide nanostructures and their application in water treatment. J. Phys. Chem. C 112, 17540–17545 (2008)

    Article  CAS  Google Scholar 

  33. N.N. Nassar, Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J. Hazard. Mater. 184, 9 (2010)

    Article  Google Scholar 

  34. M. Farooq, A. Ramli, R. Subbarao, Some studies on the synthesis and surface properties of mixed oxides of alumina and magnesia. J. Chem. Environ. 15, 715–720 (2011)

    CAS  Google Scholar 

  35. A. Trass, H. Elshamy, I. Mehasseb, M. Kemary, CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci. 258, 2997–3001 (2012)

    Article  Google Scholar 

  36. F. Davar, F. Mohandes, M. Salavati, Synthesis and characterization manganese oxide nanobundles from decomposition of manganese oxalate. Inorg. Chim. Acta 362, 3663–3668 (2009)

    Article  CAS  Google Scholar 

  37. F. Gu, C. Li, H. Cao, W. Shao, Y. Hu, J. Chen, A. Chen, Crystallinity of Li-doped MgO: Dy3+ nanocrystals via combustion process and their photoluminescence properties. J. Alloys Compd. 453, 361–365 (2008)

    Article  CAS  Google Scholar 

  38. S. Reddy, B.E.K. Swamy, H. Jayadevapp, CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim. Acta 61, 78–86 (2012)

    Article  CAS  Google Scholar 

  39. X.L. Luo, J.J. Xu, W. Zhao, H.Y. Chen, A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. Biosens. Bioelectron. 19, 1295–1300 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support of University of Kurdistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajjad Mohebbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, P., Faraji, A., Khayatian, G. et al. Effective ultrasound-assisted removal of heavy metal ions As(III), Hg(II), and Pb(II) from aqueous solution by new MgO/CuO and MgO/MnO2 nanocomposites. J IRAN CHEM SOC 14, 613–621 (2017). https://doi.org/10.1007/s13738-016-1011-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-1011-y

Keywords

Navigation