Skip to main content
Log in

Theoretical investigation of the role of chelating biphosphine ligands in oxidative addition reactions of platinum complexes

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

DFT investigation of MeI oxidative addition reaction of the phosphine chelating platinum(II) complexes, [PtMe2(Me2P(CH2)nPMe2)] (n = 1–4) to afford the organoplatinum(IV) complexes, [PtMe3I(Me2P(CH2)nPMe2)], is reported. The first step of the oxidative addition reaction that proceeds via the usual SN2 mechanism is the nucleophilic attack of Pt center of platinum(II) complex to carbon atom of MeI. The reaction proceeds by formation of a transition state, which includes the Pt…C…I fragment, followed by formation of the intermediate [PtMe3(Me2P(CH2)nPMe2)]+I with the incoming Me group in the apical position of five-coordinate intermediate and with the iodide ion out of coordination sphere of Pt(IV) intermediate. The effect of the P–Pt–P bite angle of phosphine chelate on the energy barrier of the reaction has been investigated in terms of the length of the diphosphine ligand backbone. The DFT studies are in agreement with the experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Crespo, M. Martínez, S.M. Nabavizadeh, M. Rashidi, Kinetico-mechanistic studies on C X (X = H, F, Cl, Br, I) bond activation reactions on organoplatinum(II) complexes. Coord. Chem. Rev. 279, 115–140 (2014)

    Article  CAS  Google Scholar 

  2. M.M. Conradie, J. Conradie, A density functional theory study of the oxidative addition of methyl iodide to square planar [Rh(acac)(P(OPh)3)2] complex and simplified model systems. J. Organomet. Chem. 695(18), 2126–2133 (2010)

    Article  CAS  Google Scholar 

  3. R.H. Crabtree, The organometallic chemistry of the transition metals, 3rd edn. (Wiley, New York, 2014)

    Book  Google Scholar 

  4. A.E. Shilov, G.B. Shul’pin, Activation and catalytic reactions of saturated hydrocarbons in the presence of metal complexes (Springer, Kluwer, Boston, 2000)

    Google Scholar 

  5. J.F. Hartwig, Carbon–heteroatom bond formation catalysed by organometallic complexes. Nature 455(7211), 314–322 (2008)

    Article  CAS  Google Scholar 

  6. F. Niroomand Hosseini, A. Ariafard, M. Rashidi, G. Azimi, S.M. Nabavizadeh, Density functional studies of influences of Ni triad metals and solvents on oxidative addition of MeI to [M(CH3)2(NH3)2] complexes and C–C reductive elimination from [M(CH3)3(NH3)2I] complexes. J. Organomet. Chem. 696(21), 3351–3358 (2011)

    Article  Google Scholar 

  7. S.M. Nabavizadeh, H. Sepehrpour, R. Kia, A.L. Rheingold, Bis(diphenylphosphino)acetylene as bifunctional ligand in cycloplatinated complexes: synthesis, characterization, crystal structures and mechanism of MeI oxidative addition. J. Organomet. Chem. 745, 148–157 (2013)

    Article  Google Scholar 

  8. N. Foroz, F. Niroomand Hosseini, Effects of chelate ligands containing NN, PN, and PP on the reactivity of organoplatinum (II) complexes in oxidative addition reactions. Polyhedron 74, 24–30 (2014)

    Article  CAS  Google Scholar 

  9. A. Zucca, L. Maidich, L. Canu, G.L. Petretto, S. Stoccoro, M.A. Cinellu, G.J. Clarkson, J.P. Rourke, Rollover Assisted C(sp2)–C(sp3) bond formation. Chem. Eur. J. 20(18), 5501–5510 (2014)

    Article  CAS  Google Scholar 

  10. M. Rashidi, M. Nabavizadeh, R. Hakimelahi, S. Jamali, Kinetics and mechanism of cleavage of the oxygen–oxygen bond in hydrogen peroxide and dibenzoyl peroxide by arylplatinum (II) complexes. J. Chem. Soc., Dalton Trans. 23, 3430–3434 (2001)

    Article  Google Scholar 

  11. S.M. Nabavizadeh, M.D. Aseman, B. Ghaffari, M. Rashidi, F.N. Hosseini, G. Azimi, Kinetics and mechanism of oxidative addition of MeI to binuclear cycloplatinated complexes containing biphosphine bridges: effects of ligands. J. Organomet. Chem. 715, 73–81 (2012)

    Article  CAS  Google Scholar 

  12. S. Habibzadeh, M. Rashidi, S.M. Nabavizadeh, L. Mahmoodi, F.N. Hosseini, R.J. Puddephatt, Steric and solvent effects on the secondary kinetic α-deuterium isotope effects in the reaction of methyl iodide with organoplatinum (II) complexes: application of a second-order technique in measuring the rates of rapid processes. Organometallics 29(1), 82–88 (2010)

    Article  CAS  Google Scholar 

  13. S.M. Nabavizadeh, S. Habibzadeh, M. Rashidi, R.J. Puddephatt, Oxidative addition of ethyl iodide to a dimethylplatinum (II) complex: unusually large kinetic isotope effects and their transition-state implications. Organometallics 29(23), 6359–6368 (2010)

    Article  CAS  Google Scholar 

  14. M. Safa, R.J. Puddephatt, Chelating imidazole ligands promote oxidative addition in dimethylplatinum (II) complexes. J. Organomet. Chem. 761, 42–50 (2014)

    Article  CAS  Google Scholar 

  15. M. Safa, R.J. Puddephatt, Organoplatinum complexes with an ester substituted bipyridine ligand: oxidative addition and supramolecular chemistry. J. Organomet. Chem. 724, 7–16 (2013)

    Article  CAS  Google Scholar 

  16. S.M. Nabavizadeh, S.J. Hoseini, B.Z. Momeni, N. Shahabadi, M. Rashidi, A.H. Pakiari, K. Eskandari, Oxidative addition of n-alkyl halides to diimine–dialkylplatinum (II) complexes: a closer look at the kinetic behaviors. Dalton Trans. 18, 2414–2421 (2008)

    Article  Google Scholar 

  17. K.I. Goldberg, J. Yan, E.M. Breitung, Energetics and mechanisms of carbon-carbon and carbon-iodide reductive elimination from a Pt(IV) center. J. Am. Chem. Soc. 117(26), 6889–6896 (1995)

    Article  CAS  Google Scholar 

  18. A. Yahav-Levi, I. Goldberg, A. Vigalok, A.N. Vedernikov, Competitive aryl—iodide vs aryl—aryl reductive elimination reactions in Pt(IV) complexes: experimental and theoretical studies. J. Am. Chem. Soc. 130(2), 724–731 (2008)

    Article  CAS  Google Scholar 

  19. F.S.M. Hassan, D.M. McEwan, P.G. Pringle, B.L. Shaw, Synthetic and nuclear magnetic resonance studies on dialkyl- and diaryl-platinum complexes containing chelating, monodentate, or bridging Ph2PCH2PPh2 ligands. J. Chem. Soc., Dalton Trans. 7, 1501–1506 (1985)

    Article  Google Scholar 

  20. J. Barkley, M. Ellis, S.J. Higgins, M.K. McCart, Unusually stable four-membered chelate rings in nickel(II), palladium(II), and platinum(II) complexes with the ligand 2,2-bis(diphenylphosphino)propane (2,2-dppp). Crystal and molecular structure of [PdI2(2,2-dppp)] 0.8CH2Cl2. Organometallics 17(9), 1725–1731 (1998)

    Article  CAS  Google Scholar 

  21. T.G. Appleton, M.A. Bennett, I.B. Tomkins, Effect of chelate-ring size on spectroscopic and chemical properties of methylplatinum(II) complexes of the ditertiary phosphines Ph2P[CH2]nPPh2(n = 1,2, or 3). J. Chem. Soc., Dalton Trans. 5, 439–446 (1976)

    Article  Google Scholar 

  22. C.M. Jensen, W.C. Trogler, Kinetics and mechanism of nitrile hydration catalyzed by unhindered hydridobis (phosphine) platinum (II) complexes. Regioselective hydration of acrylonitrile. J. Am. Chem. Soc. 108(4), 723–729 (1986)

    Article  CAS  Google Scholar 

  23. M.A. Guino-o, A.H. Zureick, N.F. Blank, B.J. Anderson, T.W. Chapp, Y. Kim, D.S. Glueck, A.L. Rheingold, Synthesis and structure of platinum bis (phospholane) complexes Pt (diphos)(R)(X), catalyst precursors for asymmetric phosphine alkylation. Organometallics 31(19), 6900–6910 (2012)

    Article  CAS  Google Scholar 

  24. P. Bagi, T. Kovács, T. Szilvási, P. Pongrácz, L. Kollár, L. Drahos, E. Fogassy, G. Keglevich, Platinum (II) complexes incorporating racemic and optically active 1-alkyl-3-phospholene P-ligands: synthesis, stereostructure, NMR properties and catalytic activity. J. Organomet. Chem. 751, 306–313 (2014)

    Article  CAS  Google Scholar 

  25. M. Lersch, M. Tilset, Mechanistic aspects of CH activation by Pt complexes. Chem. Rev. 105(6), 2471–2526 (2005)

    Article  CAS  Google Scholar 

  26. M.J. Frisch, G.W.Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y.Ayala, K. Morokuma, P. Voth Gas, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, Pople JA GAUSSIAN 03, Revision B03. (Gaussian. Inc, Pittsburgh, 2003)

  27. L.E. Roy, P.J. Hay, R.L. Martin, Revised basis sets for the LANL effective core potentials. J. Chem. Theory Comput. 4(7), 1029–1031 (2008)

    Article  CAS  Google Scholar 

  28. P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985)

    Article  CAS  Google Scholar 

  29. P. Hariharan, J. Pople, Self-consistent-field molecular orbital methods. XII. Further extension of Gaussian-type basis sets. Theor. Chim. Acta. 28, 213–222 (1973)

    Article  CAS  Google Scholar 

  30. L.M. Rendina, R.J. Puddephatt, Oxidative addition reactions of organoplatinum (II) complexes with nitrogen-donor ligands. Chem. Rev. 97(6), 1735–1754 (1997)

    Article  CAS  Google Scholar 

  31. D. Aguilà, E. Escribano, S. Speed, D. Talancón, L. Yermán, S. Alvarez, Calibrating the coordination chemistry tool chest: metrics of bi-and tridentate ligands. Dalton Trans. 33, 6610–6625 (2009)

    Article  Google Scholar 

  32. V. Butera, N. Russo, E. Sicilia, The role of chelating phosphine rhodium complexes in dehydrocoupling reactions of amine-boranes: a theoretical investigation attempting to rationalize the observed behaviors. ACS Catal. 4(4), 1104–1113 (2014)

    Article  CAS  Google Scholar 

  33. D.C. Smith, C.M. Haar, E.D. Stevens, S.P. Nolan, W.J. Marshall, K.G. Moloy, Synthetic, structural, and solution calorimetric studies of Pt(CH3)2(PP) complexes. Organometallics 19(7), 1427–1433 (2000)

    Article  CAS  Google Scholar 

  34. S. Hayaki, D. Yokogawa, H. Sato, S. Sakaki, Solvation effects in oxidative addition reaction of Methyliodide to Pt(II) complex: a theoretical study with RISM–SCF method. Chem. Phys. Lett. 458(4), 329–332 (2008)

    Article  CAS  Google Scholar 

  35. F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297–3305 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Shiraz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Masoud Nabavizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabavizadeh, S.M., Nikahd, S. & Niroomand Hosseini, F. Theoretical investigation of the role of chelating biphosphine ligands in oxidative addition reactions of platinum complexes. J IRAN CHEM SOC 12, 1867–1874 (2015). https://doi.org/10.1007/s13738-015-0661-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-015-0661-5

Keywords

Navigation