Skip to main content

Advertisement

Log in

Structural and in vitro anti-tubercular activity study of (E)-N’-(2,6-dihydroxybenzylidene)nicotinohydrazide and some transition metal complexes

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A template condensation of 2,6-dihydroxybenzaldehyde with nicotinic hydrazide at 20 °C yielded a tridendate ligand with the formation of azomethine bond. The structure of the ligand, H3L2 was confirmed with the use of analytical and spectroscopic analysis such as CHN analysis, ESI mass spectrum, FTIR, UV–visible spectrum and NMR techniques. The use of 2D NMR further confirmed the structure of the ligand. Also, five ligand–metal complexes were synthesized using different techniques. The physico-chemical properties of the complexes were determined with the use of melting point determination, conductivity test, micro-analysis, metal content determination (AAS), magnetic susceptibility measurements, FTIR, UV–visible spectra, ESR, TG/DTG and p-Xray diffraction study. The structures of the metal complexes were elucidated based on the analytical and spectroscopic data obtained. However, the anti-tubercular activities of the compounds were evaluated against H37Rv strain of Mycobacterium tuberculosis, in vitro. The results obtained indicated that the metal complexes are more active than isoniazid with MIC = 0.91 µg/mL. V(II) complex was found to be the most active with MIC of 0.62 µg/mL while Cu(II) complex with MIC values of 0.85 µg/mL is the least potent among the metal complexes synthesized. However, the results of the cytotoxicity against vero cells indicated that the metal complexes are more toxic when compared to the standard drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.C.D.S. Lourenço, M.D.L. Ferreira, M.V.N. De Souza, M.A. Peralta, T.R.A. Vasconcelos, M.D.O. Henriques, Eur. J. Med. Chem. 43, 1344 (2008)

    Article  Google Scholar 

  2. T. Aboul-Fadl, F.A.S. Bin-Jubair, O. Aboul-Wafa, Eur. J. of Med. Chem. 45, 4578 (2010)

    Article  CAS  Google Scholar 

  3. M. Shahar Yar, M.A. Ali, M.M. Abdullah, Med. Chem. Res., 16, 292 (2007)

  4. M.V.N. De Souza, Drug Discovery 1, 33 (2006)

    Google Scholar 

  5. Y.L. Janin, Bioorg. Med. Chem. 15, 2479 (2007)

    Article  CAS  Google Scholar 

  6. T. Scior, S.J. Garces-Eisele, Curr. Med. Chem. 13, 2205 (2006)

    Article  CAS  Google Scholar 

  7. B.N. Swamy, T.K. Suma, G.V. Rao, G.C. Reddy, Eur. J. Med. Chem. 42, 420 (2007)

    Article  CAS  Google Scholar 

  8. L.G. Dover, G.D. Coxon, J. Med. Chem. 54, 6157 (2011)

    Article  CAS  Google Scholar 

  9. R. Rappuoli, A.A. Aderem, Nature 473, 463 (2011)

    Article  CAS  Google Scholar 

  10. World Health Organization, Tuberculosis-fact sheet, (104,1-3, Geneva 2000)

  11. L. Jia, J.E. Tomaszewski, C. Hanrahan, L. Coward, P. Noker, G. Gorman, B. Nikonenko, M. Protopopova, British J. Pharmacol. 144, 80 (2005)

    Article  CAS  Google Scholar 

  12. A. Jindani, A.J. Nunn, D.A. Enarson, Lancet 364, 1244 (2004)

    Article  CAS  Google Scholar 

  13. C.H. Anna, A. Rooda, J.W. Marijke, K. Klaas, V. Karen, G. Jerome, A. Koen, L. Holger, K. Anil, B. Dirk, Antimicrob. Agents Chemother. 53, 1290 (2009)

    Article  Google Scholar 

  14. S.T. Cole, P.M. Alzari, Biochem. Soc. Trans. 35, 1321 (2007)

    Article  CAS  Google Scholar 

  15. T. Aboul-Fadl, H.A. Abdel-Aziz, M.K. Abdel-Hamid, T. Elsaman, J. Thanassi, M.J. Pucci, Molecules 16, 7864 (2011)

    Article  CAS  Google Scholar 

  16. J.K. Abeda, K. Anne, V. Duhme, S. Kiranmayi, S. Manjula, D. Prasad, P. Subhash, Dalton Trans. 41, 9192 (2012)

    Article  Google Scholar 

  17. L. Ying-Hong, F. Hai-Gen, S. Feng, G. Li-Mei, T. Sheng, B. Chong-Wen, L. Yu-Huan, W. Yan-Xiang, S. Dan-Qing, Chem. Central J. 7, 117 (2013)

    Article  Google Scholar 

  18. S. Ananthan, E.R. Faaleolea, R.C. Goldman, J.V. Hobrath, C.D. Kwong, B.E. Laughon, J.A. Maddry, A. Mehta, L. Rasmussen, R.C. Reynolds, J.A. Secrist III, N. Shindo, D.N. Showe, M.I. Sosa, W.J. Suling, E.L. White, Tuberculosis 89, 334 (2009)

    Article  CAS  Google Scholar 

  19. S.T. Cole, P.M. Alzari, Biochem. Soc. Trans. 35, 1321 (2007)

    Article  CAS  Google Scholar 

  20. J.H. Gross, Mass Spectrometry, 2nd edn. (Springer, Berlin, Heidelberg, 2011)

  21. L.D. Field, S. Sternhell, J.R. Kalman, Organic Structures from Spectra (Wiley, Germany, 2008)

  22. J.H. Simpson, Organic Structure Determination Using 2-D NMR Spectroscopy: A Problem-based Approach (Academic Press, USA, 2012)

  23. H. Sie-Tiong, W. Yip-Foo, World Appl. Sci. J. 8, 1007 (2010)

    Google Scholar 

  24. P.B. Sreeja, A. Sreekantha, C.R. Nayara, M.R.P. Kurup, A. Usman, I.A. Razak, S. Chantrapromma, H.K. Fun, J. Mol. Struct. 645, 221 (2003)

    Article  CAS  Google Scholar 

  25. F.X. Webster, R.M. Silverstein, Spectrometric Identification of Organic Compounds (Wiley, India, 2006)

    Google Scholar 

  26. M. Kuriakose, M.R.P. Kurup, E. Suresh, Spectrochim Acta. Mol. Biomol. Spectrosc. 66, 353 (2007)

    Article  Google Scholar 

  27. Y.C. Ning, Structural Identification of Organic Compounds with Spectroscopic Techniques (Wiley, USA, 2005)

  28. D.L. Pavia, G.M. Lampman, G.S. Kriz, J.A. Vyvyan, Introduction to Spectroscopy (Brooks Cole, USA, 2008)

  29. A.D. Luiz, R.F. Thais, M.C. Chung, L.S. Jean, Int. Res. Pharm. Pharmacol. 2, 001 (2012)

    Google Scholar 

  30. A. Kriza, L.V. Ababei, N. Cioatera, I. Rău, N. Stănică, J. Serb. Chem. Soc. 75, 229 (2010)

    Article  CAS  Google Scholar 

  31. S.A. Shama, H. Omara, Spectroscopy Letters. Int. J. Rapid Commun. 34, 49 (2001)

    CAS  Google Scholar 

  32. D. Sandhanamalar, S. Vedanayaki, R. Rajave, Int. J. Inorg. Bioinorg. Chem. 2, 5 (2011)

    Google Scholar 

  33. N.B. Patel, J.C. Patel, Arabian Journal of Chemistry 4, 403 (2011)

    Article  CAS  Google Scholar 

  34. R.G. Chaudhary, H.D. Juneja, M.P. Gharpure, J. Therm. Anal. Calorim. (2012). doi:10.1007/s3-012-2616-8(2012)

    Google Scholar 

  35. R.M. Wood, D.M. Stucker, L.M. Jones, W.B. Lynch, K.M. Sushil, J.H. Freed, Inorg. Chem. 38, 5384 (1996)

    Article  Google Scholar 

  36. M.Y. Hamed, J.B. Neilands, J. Inorg. Biochem. 53, 235 (1994)

    Article  CAS  Google Scholar 

  37. A.A. Ahmed, H.K. Abdul Amir, M. Abu Bakar, Bioinorganic Chemistry and Applications, 2012, doi:10.1155/2012/795812 (2012)

Download references

Acknowledgments

The authors thank the technical staff of SAIF, Central Drug Research Institute, Lucknow, Indian Institute of Technology, Roorkee, and Indian Institute of Technology, Bombay, India, for analysis of our samples. This research work was financed by CISR and TWAS through fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehinde Olurotimi Ogunniran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogunniran, K.O., Mesubi, M.A., Raju, K.V.S.N. et al. Structural and in vitro anti-tubercular activity study of (E)-N’-(2,6-dihydroxybenzylidene)nicotinohydrazide and some transition metal complexes. J IRAN CHEM SOC 12, 815–829 (2015). https://doi.org/10.1007/s13738-014-0544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-014-0544-1

Keywords

Navigation