Skip to main content
Log in

Synthesis of graphene with both high nitrogen content and high surface area by annealing composite of graphene oxide and g-C3N4

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this paper, we propose a facile, catalyst-free thermal annealing approach for synthesis of N-doping graphene (NG) using graphitic carbon nitride (g-C3N4) as the nitrogen source. Graphene with nitrogen content up to 13.9 % (atom %) and Brunauer–Emmett–Teller (BET) surface area of 419.6 m2/g can be achieved via thermal annealing composite of graphene oxide (GO) and g-C3N4. The transmission electron microscopy indicates that the NG synthesized by annealing GO/g-C3N4 composite is compact and stacked with large sheets. The atomic force microscopy reveals that the NG was less than three single graphene layers nanosheets with an apparent thickness of about 1.0 nm. This improved synthesis method for producing high nitrogen content and high BET surface area can be extended to prepare multi-element (such as B and N) doping graphene nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Wang, T. Maiyalagan, X. Wang, Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2, 781–794 (2012)

    Article  CAS  Google Scholar 

  2. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010)

    Article  CAS  Google Scholar 

  3. M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    Article  CAS  Google Scholar 

  4. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  CAS  Google Scholar 

  5. A.V. Murugan, T. Muraliganth, A. Manthiram, Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem. Mater. 21, 5004–5006 (2009)

    Article  CAS  Google Scholar 

  6. C.H. Lu, H.H. Yang, C.L. Zhu, X. Chen, G.N. Chen, A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 48, 4785–4787 (2009)

    Article  CAS  Google Scholar 

  7. E.J. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008)

    Article  CAS  Google Scholar 

  8. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  9. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  CAS  Google Scholar 

  10. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  CAS  Google Scholar 

  11. L. Qu, Y. Liu, J. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010)

    Article  CAS  Google Scholar 

  12. Z. Liu, F. Peng, H. Wang, H. Yu, W. Zheng, J. Yang, Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew. Chem. Int. Ed. 50, 3257–3261 (2011)

    Article  Google Scholar 

  13. Z. Yao, H. Nie, Z. Yang, X. Zhou, Z. Liu, S. Huang, Catalyst-free synthesis of iodine-doped graphenevia a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium. Chem. Commun. 48, 1027–1029 (2012)

    Article  CAS  Google Scholar 

  14. Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang, Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6, 205–211 (2012)

    Article  CAS  Google Scholar 

  15. Y.F. Li, Z. Zhou, P.W. Shen, Z.F. Chen, Spin gapless semiconductor–metal–half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano 3, 1952–1958 (2009)

    Article  CAS  Google Scholar 

  16. M. Deifallah, P.F. McMillan, F.J. Cora, Electronic and structural properties of two-dimensional carbon nitride graphenes. Phys. Chem. C 112, 5447–5453 (2008)

    Article  CAS  Google Scholar 

  17. Y.Z. Xue, B. Wu, L. Jiang, Y.L. Guo, L.P. Huang, J.Y. Chen, J.H. Tan, D.C. Geng, B.L. Luo, W.P. Hu, G. Yu, Y.Q. Liu, Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition. J. Am. Chem. Soc. 134, 11060–11063 (2012)

    Article  CAS  Google Scholar 

  18. D.C. Wei, Y.Q. Liu, Y. Wang, H.L. Zhang, L.P. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009)

    Article  CAS  Google Scholar 

  19. D.H. Deng, X.L. Pan, L. Yu, Y. Cui, Y.P. Jiang, J. Qi, W.X. Li, Q. Fu, X.C. Ma, Q.K. Xue, G.Q. Sun, X.H. Bao, Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 23, 1188–1193 (2011)

    Article  CAS  Google Scholar 

  20. L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao, Synthesis structure and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009)

    CAS  Google Scholar 

  21. X.R. Wang, X.L. Li, L. Zhang, Y.K. Yoon, P.K. Weber, H.L. Wang, J. Guo, H.J. Dai, N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009)

    Article  CAS  Google Scholar 

  22. Y. Wang, Y.Y. Shao, D.W. Matson, J.H. Li, Y.H. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4, 1790–1798 (2010)

    Article  CAS  Google Scholar 

  23. Y.Y. Shao, S. Zhang, M.H. Engelhard, G.S. Li, G.C. Shao, Y. Wang, J. Liu, I.A. Aksay, Y.H. Lin, Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem. 20, 7491–7496 (2010)

    Article  CAS  Google Scholar 

  24. X.L. Li, H.L. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H.J. Dai, Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 31, 15939–15944 (2009)

    Article  Google Scholar 

  25. Z.H. Sheng, L. Shao, J.J. Chen, W.J. Bao, F.B. Wang, X.H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5, 4350–4358 (2011)

    Article  CAS  Google Scholar 

  26. X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)

    Article  CAS  Google Scholar 

  27. X.C. Wang, X.F. Chen, A. Thomas, X.Z. Fu, M. Antonietti, Metal-containing carbon nitride compounds: a new functional organic–metal hybrid material. Adv. Mater. 21, 1609–1612 (2009)

    Article  CAS  Google Scholar 

  28. Y.J. Zhang, T. Mori, J.H. Ye, M. Antonietti, Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132, 6294–6295 (2010)

    Article  CAS  Google Scholar 

  29. J.S. Zhang, X.F. Chen, K. Takanabe, K. Maeda, K. Domen, J.D. Epping, X.Z. Fu, M. Antonietti, X.C. Wang, Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. Int. Ed. 49, 441–444 (2010)

    Article  CAS  Google Scholar 

  30. Y.J. Zhang, A. Thomas, M. Antonietti, X.C. Wang, Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments. J. Am. Chem. Soc. 131, 50–51 (2009)

    Article  CAS  Google Scholar 

  31. X.C. Wang, K. Maeda, X.F. Chen, K. Takanabe, K. Domen, Y.D. Hou, X.Z. Fu, M. Antonietti, Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 131, 1680–1681 (2009)

    Article  CAS  Google Scholar 

  32. X.F. Chen, J.S. Zhang, X.Z. Fu, M. Antonietti, X.C. Wang, Fe–g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 131, 11658–11659 (2009)

    Article  CAS  Google Scholar 

  33. Y. Guo, S. Chu, S.C. Yan, Y. Wang, Z.G. Zou, Developing a polymeric semiconductor photocatalyst with visible light response. Chem. Commun. 46, 7325–7327 (2010)

    Article  CAS  Google Scholar 

  34. M.J. Bojdys, J.O. Müller, M. Antonietti, A. Thomas, Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem. Eur. J. 14, 8177–8182 (2008)

    Article  CAS  Google Scholar 

  35. H.Z. Zhao, M. Lei, X.A. Yang, J.K. Jian, X.L. Chen, Route to GaN and VN assisted by carbothermal reduction process. J. Am. Chem. Soc. 127, 15722–15723 (2005)

    Article  CAS  Google Scholar 

  36. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  CAS  Google Scholar 

  37. H.J. Yan, H.X. Yang, TiO2–g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J. Alloys Compd. 509, L26–L29 (2011)

    Article  CAS  Google Scholar 

  38. H.J. Yan, Y. Chen, S.M. Xu, Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light. Int. J. Hydrogen Energy 37, 125–133 (2012)

    Article  CAS  Google Scholar 

  39. H.J. Yan, Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem. Commun. 48, 3430–3432 (2012)

    Article  CAS  Google Scholar 

  40. S.H. Huh, in Physics and Applications of Graphene—Experiments, ed. by S. Mikhailov (InTech, New York, 2011)

  41. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. Muller, R. Schlogl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Chem. Mater. 18, 4893–4908 (2008)

    Article  CAS  Google Scholar 

  42. S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25, 10397–10401 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (NSFC, No. 21273157). We also thank Sichuan University Analytical & Testing Center for TEM, EA, and XRD analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjian Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Liu, K., Cao, H. et al. Synthesis of graphene with both high nitrogen content and high surface area by annealing composite of graphene oxide and g-C3N4 . J IRAN CHEM SOC 12, 807–814 (2015). https://doi.org/10.1007/s13738-014-0543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-014-0543-2

Keywords

Navigation