Skip to main content
Log in

Electrolyte type and concentration effects on poly(3-(2- aminoethyl thiophene) electro-coated on glassy carbon electrode via impedimetric study

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In this study, 3-(2-Aminoethyl thiophene) (2AET) monomer was electropolymerized on glassy carbon electrode (GCE) using various electrolytes (lithium perchlorate (LiClO4), sodium perchlorate (NaClO4), tetrabutyl ammonium tetra fluoroborate (TBABF4) and tetraethyl ammonium tetra fluoroborate (TEABF4) in acetonitrile (CH3CN) as solvent. Poly(3-(2-aminoethyl thiophene) (P(2AET))/GCE was characterized by cyclic voltammetry (CV), Fourier transform infrared reflectance spectrophotometry (FTIR-ATR), scanning electron microscopy, energy dispersive X-ray analysis (EDX), and electrochemical impedance spectroscopy (EIS) techniques. The electrochemical impedance spectroscopic results were given by Nyquist, Bode-magnitude, Bode-phase, capacitance and admittance plots. The highest low frequency capacitance (C LF) value obtained was 0.65 mF cm−2 in 0.1 M LiClO4/CH3CN for the initial monomer concentration of 1.5 mM. The highest double layer capacitance (C dl = ~0.63 mF cm−2) was obtained in 0.1 M LiClO4/ACN for [2AET]0 = 0.5, 1.0 and 1.5 mM. The maximum phase angles (θ = 76.1o at 26.57 Hz) and conductivity (Y″ = 3.5 mS) were obtained in TEABF4/ACN for [2AET]0 = 0.5 and 1.0 mM, respectively. An equivalent circuit model of R(Q(R(Q(R(CR))))) was simulated for different electrolytes (LiClO4, NaClO4, TBABF4 and TEABF4)/P(2AET)/GCE system. A good fitting was obtained for the calculated experimental and theoretical EIS measurement results. The electroactivity of P(2AET)/GCE opens the possibility of using modified coated electrodes for electrochemical micro-capacitor electrodes and biosensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Heth CL, Tallman DE, Rasmussen SC (2010) Electrochemical study of 3-(N-alkylamino)thiophenes: experimental and theoretical insights into a unique mechanism of oxidative polymerization. J Phys Chem B 114:5275–5282

    Article  CAS  Google Scholar 

  2. Beaujuge PM, Amb CM, Reynolds JR (2010) Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions. Acc Chem Res 43:1396–1407

    Article  CAS  Google Scholar 

  3. Roncali J (1992) Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem Rev 92:711–738

    Article  CAS  Google Scholar 

  4. McCullough RD (1998) The chemistry of conducting polythiophenes. Adv Mater 10:93–116

    Article  CAS  Google Scholar 

  5. Koyuncu FB, Koyuncu S, Ozdemir E (2011) A new multi-electrochromic 2,7-linked polycarbazole derivative: effect of the nitro subunit. Org Electron 12:1701–1710

    Article  CAS  Google Scholar 

  6. Zhang K, Tieke B, Forgie JC, Skabara PJ (2009) Electrochemical polymerisation of N-Arylated and N-Alkylated EDOT-substituted pyrrolo[3,4-c] pyrrole-1,4-dione (DPP) derivatives:influence of substitution pattern on optical and electronic properties. Macromol Rapid Commun 30:1834–1840

    Article  CAS  Google Scholar 

  7. Irvin JA, Irvin DJ, Stenger-Smith JD (2007) Electroactive polymers for batteries and supercapacitors. In: Handbook of conjugated polymers: processing and applications, Skotheim TA, Reynolds JR (Eds), 3rd edn, CRC Press, Boca Raton

  8. Roncali J (1999) Electrogenerated functional conjugated polymers as advanced electrode materials. J Mater Chem 9:1875–1893

    Article  CAS  Google Scholar 

  9. Naudin E, Ho HA, Branchaud S, Breau L, Bélanger D (2002) Electrochemical polymerization and characterization of poly(3-(4-fluorophenyl)thiophene) in pure ionic liquids. J Phys Chem B 106:10585–10593

    Article  CAS  Google Scholar 

  10. Beaujuge PM, Ellinger S, Reynolds JR (2008) The donor-acceptor approach allows a black to transmissive switching polymeric electrochrome. Nat Mater 7:795–799

    Article  CAS  Google Scholar 

  11. Chang C-H, Wang K-L, Jiang J-C, Liaw D-J, Lee K-R, Lai J-Y, Lai K-H (2010) Novel rapid switching and bleaching electrochromic polyimides containing triarylamine with 2-phenyl-2-isopropyl groups. Polymer 51:4493–4502

    Article  CAS  Google Scholar 

  12. Goto H, Kawabata K (2011) Light driven asymmetric polymerization: an approach for tele-control reaction. Polym Chem 2:1098–1106

    Article  CAS  Google Scholar 

  13. Goto H (2012) Electrochemical polymerization in crystal—preparation of polybithiophene with crystal order. J Polym Sci Part A Polym Chem 50:622–628

    Article  CAS  Google Scholar 

  14. Kiani GR, Arsalani N, Entezami AA (2001) The influence of the catalytic amount of 1-(2-pyrrolyl)-2-(2-thienyl)ethylene and 2-(2-thienyl)pyrrole on electropolymerization of pyrrole and N-methylpyrrole. Iran Polym J 10:135–142

    CAS  Google Scholar 

  15. Tam PD, Van Hieu N (2011) Conducting polymer film-based immunosensor using carbon nanotube/antibodies doped polypyrrole. Appl Surf Sci 257:9817–9824

    Article  CAS  Google Scholar 

  16. Ates M, Yilmaz K, Shahryari A, Omanovic S, Sarac AS (2008) A study of the electrochemical behavior of poly(N-vinylcarbazole) formed on carbon fiber microelectrodes and its response to dopamine. IEEE Sensors J 8:1628–1639

    Article  CAS  Google Scholar 

  17. Ates M, Sarac AS, Turhan CM, Ayaz NE (2009) Polycarbazole modified carbon fiber microelectrode: surface characterization and dopamine sensor. Fiber Polym 10:46–52

    Article  CAS  Google Scholar 

  18. Ates M, Castillo J, Sarac AS, Schuhmann W (2008) Carbon fiber microelectrodes electrocoated with polycarbazole and poly(carbazole-co-p-tolylsulfonyl pyrrole) P(Cz-co-p Tsp) films for the detection of dopamine in presence of ascorbic acid. Microchim Acta 160:247–251

    Article  CAS  Google Scholar 

  19. Gómez H, Ram MK, Alvi F, Villalba P, Stefanakos E, Kumar A (2011) Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources 196:4102–4108

    Article  Google Scholar 

  20. Zhou Y, Qin Z-Y, Li L, Zhang Y, Wei Y-L, Wang L-F, Zhu M-F (2010) Polyaniline/multi-walled carbon nanotube composites with core-shell structures as supercapacitor electrode materials. Electrochim Acta 55:3904–3908

    Article  CAS  Google Scholar 

  21. Wang J, Xu Y, Chen X, Du X (2007) Electrochemical supercapacitor electrode material based on poly(3,4-ethylenedioxythiophene) polypyrrole composite. J Power Sources 163:1120–1125

    Article  CAS  Google Scholar 

  22. Selvakumar M, Pitchumani S (2010) Hybrid supercapacitor based on poly(aniline-co-m-anilicacid) and activated carbon in non-aqueous electrolyte. Korean J Chem Eng 27:977–982

    Article  CAS  Google Scholar 

  23. Zou J, Yip H-L, Hau SK, Jen AK-Y (2010) Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells. Appl Phys Let 96:203301–203303

    Article  Google Scholar 

  24. Ma C, Xu Y, Zhang C, Xu Y, Xiang W, Ouyang M (2009) Electrochemical polymerization of a beta–beta linkages polythiophene derivative based on 2,5-diphenyl-thiophene. J Electroanal Chem 634:31–34

    Article  CAS  Google Scholar 

  25. Borrelli DC, Barr MC, Bulović V, Gleason KK (2012) Bilayer heterojunction polymer solar cells using unsubstituted polythiophene via oxidative chemical vapor deposition. Sol Energ Mat Sol C 99:190–196

    Article  CAS  Google Scholar 

  26. Sivaraman P, Mishra SP, Bhattacharrya AR, Thakur A, Shashidhara K, Samui AB (2012) Effect of regioregularity on specific capacitance of poly(3-hexylthiophene). Electrochim Acta 69:134–138

    Article  CAS  Google Scholar 

  27. Anglin TC, Speros JC, Massari AM (2011) Interfacial ring orientation in polythiophene field-effect transistors on functionalized dielectrics. J Phys Chem C 115:16027–16036

    Article  CAS  Google Scholar 

  28. Jonas F, Schrader L (1991) Conductive modifications of polymers with polypyrroles and polythiophenes. Synth Met 41:831–836

    Article  CAS  Google Scholar 

  29. Kiani GR, Sheikhloie H, Rostami A (2011) Highly enhanced electrical conductivity and thermal stability of polythiophene/single-walled carbon nanotubes nanocomposite. Iran Polym J 20:623–632

    CAS  Google Scholar 

  30. Bushueva AY, Shklyaeva EV, Abashev GG (2009) New pyrimidines incorporating thiophene and pyrrole moieties: synthesis and electrochemical polymerization. Mendeleev Commun 19:329–331

    Article  CAS  Google Scholar 

  31. Groenendaal BL, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present and future. Adv Mater 12:481–494

    Article  CAS  Google Scholar 

  32. Roncali J (1997) Synthetic principles for band gap control in linear pi-conjugated systems. Chem Rev 97:173–205

    Article  CAS  Google Scholar 

  33. Granstrom M (1997) Polym novel polymer light-emitting diode designs using poly(thiophenes). Polym Adv Technol 8:424–430

    Article  CAS  Google Scholar 

  34. Higgins TB, Mirkin CA (1998) Model coordination complexes for designing poly(terthiophene)/Rh(I) hybrid materials with electrochemically tunable reactivities. Chem Mater 10:1589–1595

    Article  CAS  Google Scholar 

  35. Jadamiec M, Lapkowski M, Matlengiewicz M, Brembilla A, Henry B, Rodehüser L (2007) Electrochemical and spectroelectrochemical evidence of dimerization and oligomerization during the polymerization of terthiophenes. Electrochim Acta 52:6146–6154

    Article  CAS  Google Scholar 

  36. Chan HSO, Ng SC (1998) Synthesis, characterization and applications of thiophene-based functional polymers. Prog Polym Sci 23:1167–1231

    Article  CAS  Google Scholar 

  37. Barbarella G, Melucci M, Sotgiu G (2005) The versatile thiophene: an overview of recent research on thiophene-based materials. Adv Mater 17:1581–1593

    Article  CAS  Google Scholar 

  38. Jen K-Y, Miller GG, Elsenbaumer RL (1986) Highly conducting, soluble, and environmentally-stable poly(3-alkylthiophenes). J Chem Soc Chem Commun 17:1346–1347

    Article  Google Scholar 

  39. Armelin E, Bertran O, Estrany F, Salvatella R, Alemán C (2009) Characterization and properties of a polythiophene with a malonic acid dimethyl ester side group. Eur Polym J 45:2211–2221

    Article  CAS  Google Scholar 

  40. Scully JR, Silverman DC, Kendig MV (1993) Electrochemical impedance: analysis and interpretation. ASTM Int, Philadelphia

    Book  Google Scholar 

  41. Darowicki K, Kawula J (2004) Impedance characterization of the process of polyaniline first redox transformation after aniline electropolymerization. Electrochim Acta 49:4829–4839

    Article  CAS  Google Scholar 

  42. Baldissera AF, Freitas DB, Ferreira CA (2010) Electrochemical impedance spectroscopy investigation of chlorinated rubber-based coatings containing polyaniline as anticorrosion agent. Mater Corros 61:790–801

    Article  CAS  Google Scholar 

  43. Wang X, Bernard MC, Deslouis C, Joiret S, Rousseau P (2010) A new transfer function in electrochemistry: dynamic coupling between Raman spectroscopy and electrochemical impedance spectroscopy. Electrochim Acta 55:6299–6307

    Article  CAS  Google Scholar 

  44. Jannakoudakis PD, Pagalos N (1994) Electrochemical characteristics of anodically prepared conducting polyaniline films on carbon fiber supports. Synth Met 68:17–31

    Article  CAS  Google Scholar 

  45. Ferloni P, Mastragostino M, Meneghello L (1996) Impedance analysis of electronically conducting polymers. Electrochim Acta 41:27–33

    Article  CAS  Google Scholar 

  46. Simoes FR, Pocrifka LA, Marchesi LFQP, Pereira EC (2011) Investigation of electrochemical degradation process in polyaniline/polystyrene sulfonated self-assembly films by impedance spectroscopy. J Phys Chem B 115:11092–11097

    Article  CAS  Google Scholar 

  47. Agrisuelas J, Gabrielli C, García-Jareño JJ, Giménez-Romero D, Perrot H, Vicente FJ (2007) Spectroelectrochemical identification of the active sites for protons and anions insertions into poly(azure a) thin polymer films. J Phys Chem C 111:14230–14237

    Article  CAS  Google Scholar 

  48. Amemiya T, Hashimoto K, Fujishima A (1993) Faradaic charge-transfer with double-layer charging and/or adsorption related charging at polymer-modified electrodes as observed by color impedance spectroscopy. J Phys Chem 97:9736–9740

    Article  CAS  Google Scholar 

  49. Agrisuelas J, García- Jareño JJ, Giménez-Romero D, Vicente F (2010) An approach to the electrochemical activity of poly-(phenothiazines) by complementary electrochemical impedance spectroscopy and Vis-NIR spectroscopy. Electrochim Acta 55:6128–6135

    Article  CAS  Google Scholar 

  50. Manickam A, Chevalier A, McDermott M, Ellington AD, Hassibi A (2010) A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Trans Biomed Circuits Syst 4:379–390

    Article  Google Scholar 

  51. Edge S, Charlton A, Varma KS, Hansen TK, Underhill AE, Kathirgamanathan P, Berger J, Simonson O (1993) The preparation and properties of maleimide derivatives of 3-(2-aminoethyl)thiophene. Synth Met 53:315–324

    Article  CAS  Google Scholar 

  52. Era M, Yoneda S, Sano T, Noto M (2003) Preparation of amphiphilic poly(thiophene)s and their application for the construction of organic-inorganic superlattices. Thin Solid Films 438:322–325

    Article  Google Scholar 

  53. Murray RW, Ewing AG, Durst RA (1987) Chemically modified electrodes: molecular design for electrocatalysis. Anal Chem 59:379–390

    Article  Google Scholar 

  54. Anson FC, Ni CL, Saveant JM (1985) Eelectrocatalysis at redox polymer electrodes with separation of the catalytic and charge propogation roles. Reduction of O2 to H2O2 as catalyzed by cobalt (II) tetrakis (4-N-methylpyridyl)porphyrin. J Am Chem Soc 107:3442–3450

    Article  CAS  Google Scholar 

  55. Skotheim TA, Reynolds J (eds) (2007) Hanbook of conducting polymers, vols 1 and 2, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  56. Ding KQ, Wang Q, Jia Z, Tong R, Wang X, Shao H (2003) Impedance description of the effect of the polar potential on a Schiff base self-assembled monolayer. J Chin Chem Soc 50:387–394

    CAS  Google Scholar 

  57. Saraç AS, Gilsing H-D, Gencturk A, Schulz B (2007) Electrochemically polymerized 2,2-dimethyl-3,4-propylenedioxythiophene on carbon fiber for microsupercapacitor. Prog Org Coat 60:281–286

    Article  Google Scholar 

  58. Sezer E, Ustamehmetoğlu B, Saraç AS (1999) Chemical and electrochemical polymerization of pyrrole in the presence of N-substituted carbazoles. Synth Met 107:7–17

    Article  CAS  Google Scholar 

  59. Bates JB, Wang JC, Anderson RL (1984) In: Proceedings of the ECS Fall meeting, extented abstracts, New Orleans, 84:233–237

  60. Le Mehaute A, Crepy G (1993) Introduction to transfer and motion in fractal media: the geometry of kinetics. Solid State Ionics 9–10:17–30

    Google Scholar 

  61. Tanguy J, Baudoin JL, Chao F, Costa M (1992) Study of the redox mechanism of poly-3-methylthiophene by impedance spectroscopy. Electrochim Acta 37:1417–1428

    Article  CAS  Google Scholar 

  62. Refaey SAM (2004) Electrochemical impedance studies on the electrochemical properties of poly(3-methylthiophene) in aqueous solutions. Synth Met 140:87–94

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work by the Research Foundation of Namik Kemal University (Turkey) project number: NKU.BAP.00.10.AR.11.01) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Ates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ates, M., Karazehir, T., Arican, F. et al. Electrolyte type and concentration effects on poly(3-(2- aminoethyl thiophene) electro-coated on glassy carbon electrode via impedimetric study. Iran Polym J 22, 199–208 (2013). https://doi.org/10.1007/s13726-012-0117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-012-0117-z

Keywords

Navigation