Skip to main content

Advertisement

Log in

Updates on Keloidal Wound Healing

  • Wound Care and Healing (A Friedman, Section Editor)
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Keloids represent an abnormal response to wound healing. Despite significant study into this area, the pathogenesis overall remains unclear. And though numerous therapies have been evaluated, many of these treatments have only been supported by weak evidence, and cosmetic results are often disappointing.

Recent Findings

With regard to pathogenesis, there is a genetic predisposition in certain populations to keloid development, and the role of epithelial and endothelial to mesenchymal transformation is being found to be important. Therapies that target this transition, such as mesenchymal stem cells, are being studied. Proteins that alter production of TGF-beta, a cytokine involved in the development of keloids, are being identified and represent potential upstream targets. So too are therapies targeting TGF-beta directly being studied. Finally, several therapies, new and old, have been evaluated in clinical trials.

Summary

Insights into the pathogenesis of keloids have led to development of promising therapies for keloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Zhu F, Wu B, Li P, Wang J, Tang H, Liu Y, et al. Association study confirmed susceptibility loci with keloid in Chinese Han population. PLoS One. 2013;8:e62377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ogawa R, Watanabe A, Than Naing B, Sasaki M, Fujita A, Akaishi S, et al. Associations between keloid severity and single-nucleotide polymorphisms: importance of rs8032158 as a biomarker of keloid severity. J Invest Dermatol. 2014;134:2041–3 .This study identified a new SNP, rs8032158, encoding a portion of neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4), as not only a risk factor for keloid development, but also severity

    Article  CAS  PubMed  Google Scholar 

  3. Velez Edwards DR, Tsosie KS, Williams SM, Edwards TL, Russell SB. Admixture mapping identifies a locus at 15q21.2-22.3 associated with keloid formation in African Americans. Human Genet. 2014;133:1513–23 .This study demonstrated an association between mutations in myosin-encoding genes and development of keloids in African Americans

    Article  CAS  Google Scholar 

  4. Tosa M, Watanabe A, Ghazizadeh M. IL-6 polymorphism and susceptibility to keloid formation in a Japanese population. J Invest Dermatol. 2016;136:1069–72 .This study found mutation in IL-6 gene to be associated with keloids in a Japanese cohort

    Article  CAS  PubMed  Google Scholar 

  5. Yan L, Cao R, Wang L, Liu Y, Pan B, Yin Y, et al. Epithelial-mesenchymal transition in keloid tissues and TGF-b1-induced hair follicle outer root sheath keratinocytes. Wound Repair Regen. 2015;23:601–10 .This study evaluated the role of epithelial-mesenchymal transition in keloid pathogenesis. The authors found loss of epithelial markers and gain of mesenchymal markers in keloid epidermis and dermis, as well as enhanced TGF-beta-1 expression

    Article  PubMed  Google Scholar 

  6. Lopez-Novoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med. 2009;1:303–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2006;7:131–42.

    Article  CAS  PubMed  Google Scholar 

  8. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee WJ, Park JH, Shin JU, Noh H, Lew DH, Yang WI, et al. Endothelial-to-mesenchymal transition induced by Wnt 3a in keloid pathogenesis. Wound Repair Regen. 2015;23:435–42 .This study evaluated the role of endothelial-to-mesenchymal transition in keloid pathogenesis. The authors found keloidal fibroblasts demonstrated upregulation of endothelial markers, suggesting an endothelial origin, as well as upregulation of Wnt-3a, thought to be pathogenic in this transition

    Article  PubMed  Google Scholar 

  10. Li J, Bertram JF. Review: Endothelial-myofibroblast transition, a new player in diabetic renal fibrosis. Nephrology (Carlton). 2010;15:507–12.

    Article  Google Scholar 

  11. Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C. Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun. 2010;2:238–47.

    Article  CAS  PubMed  Google Scholar 

  12. Taiyab A, Rao CM. HSP90 modulates actin dynamics: inhibition of HSP90 leads to decreased cell motility and impairs invasion. Biochim Biophys Acta. 2011;1813:213–21.

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Sun X, Wang Z, Chen L, Li D, Zhou J, et al. Regulation of vascular endothelial cell polarization and migration by Hsp70/Hsp90-organizing protein. PLoS One. 2012;7:e36389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rappa F, Farina F, Zummo G, David S, Campanella C, Carini F, et al. HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview. Anticancer Res. 2012;32:5139–50.

    CAS  PubMed  Google Scholar 

  15. Yun IS, Lee MH, Rah DK, Lew DH, Park JC, Lee WJ. Heat shock protein 90 inhibitor (17-AAG) induces apoptosis and decreases cell migration / motility of keloid fibroblasts. Plast Reconstr Surg. 2015;136:44e–53e .This study evaluated the role of HSP-90, a cellular chaperone for TGF-beta receptors I and II, in keloidal tissues. The authors found that inhibition of HSP-90 led to decreased proliferation and increased apoptosis of keloidal fibroblasts

    Article  CAS  PubMed  Google Scholar 

  16. Wrighton KH, Lin X, Feng XH. Critical regulation of TGFbeta signaling by Hsp90. Proc Natl Acad Sci U S A. 2008;105:9244–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee WJ, Lee JH, Ahn HM, Song SY, Kim YO, Lew DH, et al. Heat shock protein 90 inhibitor decreases collagen synthesis of keloid fibroblasts and attenuates the extracellular matrix on the keloid spheroid model. Plast Reconstr Surg. 2015;136:328e–37e .This study demonstrated that inhibition of HSP-90 resulted in decreased collagen synthesis by keloidal fibroblasts

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jumper N, Paus R, Bayat A. An innovative approach to dissecting keloid disease leading to identification of the retinoic acid pathways as a potential therapeutic target. Plast Reconstr Surg Glob Open. 2016;4:e601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jumper N, Hodgkinson T, Arscott G, Har-Shai Y, Paus R, Bayat A. The aldo-keto reductase AKR1B10 is up-regulated in keloid epidermis, implicating retinoic acid pathway dysregulation in the pathogenesis of keloid disease. J Invest Dermatol. 2016. doi:10.1016/j.jid.2016.03.022 .This study evaluated the role of retinoic acid on keloid pathogenesis. The authors found upregulation of AKR1B10, a key enzyme in metabolism of retinoic acid, in keloid epidermis, leading to reduced retinoic acid levels and increased TGF-beta and collagen

    PubMed  Google Scholar 

  20. Kwon SY, Park SH, Park K. Comparative effect of topical silicone gel and topical tretinoin cream for the prevention of hypertrophic scar and keloid formation and the improvement of scars. J Eur Acad Dermatol Venereol. 2014;28:1025–33.

    Article  CAS  PubMed  Google Scholar 

  21. Panabiere-Castaings MH. Retinoic acid in the treatment of keloids. J Dermatol Surg Oncol. 1988;14:1275–6.

    Article  CAS  PubMed  Google Scholar 

  22. Zang Y, Wang T, Xie W, Wang-Fischer YL, Getty L, Han J, et al. Regulation of acetyl CoA carboxylase and carnitine palmitoyl transferase-1 in rat adipocytes. Obes Res. 2005;13:1530–9.

    Article  CAS  PubMed  Google Scholar 

  23. Ma J, Yan R, Zu X, Cheng JM, Rao K, Liao DF, et al. Aldo-keto reductase family 1 B10 affects fatty acid synthesis by regulating the stability of acetyl-CoA carboxylase-alpha in breast cancer cells. J Biol Chem. 2008;283:3418–23.

    Article  CAS  PubMed  Google Scholar 

  24. Morikawa Y, Kezuka C, Endo S, Ikari A, Soda M, Yamamura K, et al. Acquisition of doxorubicin resistance facilitates migrating and invasive potentials of gastric cancer MKN45 cells through up-regulating aldo-keto reductase 1B10. Chem Biol Interact. 2015;230:30–9.

    Article  CAS  PubMed  Google Scholar 

  25. O’Kane S, Ferguson MW. Transforming growth factor beta s and wound healing. Int J Biochem Cell Biol. 1997;29:63–78.

    Article  PubMed  Google Scholar 

  26. Smith P, Mosiello G, Deluca L, Ko F, et al. TGF-beta2 activates proliferative scar fibroblasts. J Surg Res. 1999;82:319–23.

    Article  CAS  PubMed  Google Scholar 

  27. Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci. 1995;108:985–1002.

    CAS  PubMed  Google Scholar 

  28. Occleston NL, O’Kane S, Laverty HG, Cooper M, et al. Discovery and development of avotermin (recombinant human transforming growth factor beta 3): a new class of prophylactic therapeutic for the improvement of scarring. Wound Repair Regen. 2011;19(Suppl 1):s38–48.

    Article  PubMed  Google Scholar 

  29. Young L. Trial of Juvista (Avotermin) following removal of ear lobe keloid scars. Retrieved June 11, 2016, from https://clinicaltrials.gov/ct2/show/NCT00469235.

  30. Young V. Exploratory study of the efficacy and safety of Juvista 250 ng when administered following excision of ear lobe keloids. Retrieved June 11, 2016, from https://clinicaltrials.gov/ct2/show/NCT00836147.

  31. Young V. Safety of Juvista when administered following excision of ear lobe keloids (RN1001–0093). Retrieved June 11, 2016, from https://clinicaltrials.gov/ct2/show/NCT00710333.)

  32. Mun JH, Kim YM, Kim BS, Kim JH, Kim MB, Ko HC. Simvastatin inhibits transforming growth factor-b1-induced expression of type I collagen, CTGF, and a-SMA in keloid fibroblasts. Wound Repair Regen. 2014;22:125–33 .This study investigated the role of statins in keloid pathogenesis, and found that administration to keloidal fibroblasts resulted in decreased production of pro-fibrotic proteins and cytokines

    Article  PubMed  Google Scholar 

  33. Munford RS. Statins and the acute-phase response. N Engl J Med. 2011;344:2016–8.

    Article  Google Scholar 

  34. Greenwood J, Steinman L, Zamvil SS. Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol. 2006;6:358–70.

    Article  CAS  PubMed  Google Scholar 

  35. Burke JP, Watson RW, Murphy M, Docherty NG, Coffey JC, O’Connell PR. Simvastatin impairs smad-3 phosphorylation and modulates transforming growth factor beta1-mediated activation of intestinal fibroblasts. Br J Surg. 2009;96:541–51.

    Article  CAS  PubMed  Google Scholar 

  36. Patel R, Nagueh SF, Tsybouleva N, Abdellatif M, Lutucuta S, Kopelen HA, et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation. 2001;104:317–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Watts KL, Sampson EM, Schultz GS, Spiteri MA. Simvastatin inhibits growth factor expression and modulates profibrogenic markers in lung fibroblasts. Am J Respir Cell Mol Biol. 2005;32:290–300.

    Article  CAS  PubMed  Google Scholar 

  38. Eberlein M, Heusinger-Ribeiro J, Goppelt-Struebe M. Rho-dependent inhibition of the induction of connective tissue growth factor (CTGF) by HMG CoA reductase inhibitors (statins. Br J Pharmacol. 2001;133:1172–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ikeda K, Torigoe T, Matsumoto Y, Fujita T, Sato N, Yotsuyanagi T. Resveratrol inhibits fibrogenesis and induces apoptosis in keloid fibroblasts. Wound Repair Regen. 2013;21:616–23.

    Article  PubMed  Google Scholar 

  40. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191–6.

    Article  CAS  PubMed  Google Scholar 

  41. Godichaud S, Krisa S, Couronne B, Dubuisson L, Merillon JM, Desmouliere A, et al. Deactivation of cultured human liver myofibroblasts by trans-resveratrol, a grapevine-derived polyphenol. Hepatology. 2000;31:922–31.

    Article  CAS  PubMed  Google Scholar 

  42. Chavez E, Reyes-Gordillo K, Segovia J, Shibayama M, Tsutsumi V, Vergara P, et al. Resveratrol prevents fibrosis, NF-kappaB activation and TGF-beta increases induced by chronic CCI4 treatment in rats. J Appl Toxicol. 2008;28:35–43.

    Article  CAS  PubMed  Google Scholar 

  43. Grant C, Chudakova DA, Itinteang T, Chibnail AM, Brasch HD, David PF, et al. Expression of embryonic stem cell markers in keloid-associated lymphoid tissue. J Clin Pathol. 2016 Mar 30. doi:10.1136/jclinpath-2015-203483 .The authors identified a stem cell-like population within keloids

  44. Moon JH, Kwak SS, Park G, Jung HY, Yoon BS, Park J, et al. Isolation and characterization of multipotent human keloid-derived mesenchymal-like stem cells. Stem Cells Dev. 2008;17:713–24.

    Article  CAS  PubMed  Google Scholar 

  45. Fang F, Huang RL, Zheng Y, Liu M, Huo R. Bone marrow derived mesenchymal stem cells inhibit the proliferative and profibrotic phenotype of hypertrophic scar fibroblasts and keloid fibroblasts through paracrine signaling. J Dermatol Sci. 2016 Mar 4. doi:10.1016/j.jdermsci.2016.03.003 .The authors studied the role of bone marrow-derived mesenchymal stem cell-conditioned medium on keloidal fibroblasts and found decreased expression of pro-fibrotic cytokines and decreased extracellular matrix synthesis

  46. Jackson WM, Nesti LJ, Tuan RS. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther. 2012;3:20.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Usunier B, Benderitter M, Tamarat R, Chapel A. Management of fibrosis: the mesenchymal stromal cells breakthrough. Stem Cells Int. 2014;2014:340257.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mohamadnejad M, Alimoghaddam K, Mohyeddin-Bonab M, Bagheri M, Bashtar M, Ghanaati H, et al. Phase 1 trial of autologous bone marrow mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis. Arch Iran Med. 2007;10:459–66.

    CAS  PubMed  Google Scholar 

  49. Zhang Z, Lin H, Shi M, Xu R, Gu J, Lv J, et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J Gastroenterol Hepatol. 2012;27:112–20.

    Article  CAS  PubMed  Google Scholar 

  50. Lee MJ, Jung J, Na KH, Moon JS, Lee HJ, Kim JH, et al. Anti-fibrotic effect of chorionic plate-derived mesenchymal stem cells isolated from human placenta in a rat model of CCI(4)-injured liver: potential application to the treatment of hepatic diseases. J Cell Biochem. 2010;111:1453–63.

    Article  CAS  PubMed  Google Scholar 

  51. Cherubino M, Rubin JP, Miljkovic N, Kelmendi-Doko A, Marra KG. Adipose-derived stem cells for wound healing applications. Ann Plast Surg. 2011;66:210–5.

    Article  CAS  PubMed  Google Scholar 

  52. Fong CY, Biswas A, Subramanian A, Srinivasan A, Choolani M, Bongso A. Human keloid cell characterization and inhibition of growth with human Wharton’s jelly stem cell extracts. J Cell Biochem. 2014;115:826–38 .This study evaluated the response of keloidal fibroblasts in vitro to administration of human Wharton’s jelly mesenchymal stem cells. They found linear decreases in cell proliferation and migration

    Article  CAS  PubMed  Google Scholar 

  53. Viera MH, Caperton CV, Berman B. Advances in the treatment of keloids. J Drugs Dermatol. 2011;10:468–80.

    CAS  PubMed  Google Scholar 

  54. Berman B, Garikaparthi S, Smith E, Newburger J. A novel hydrogel scaffold for the prevention or reduction of the recurrence of keloid scars postsurgical excision. J Am Acad Dermatol. 2013;69:828–30.

    Article  PubMed  Google Scholar 

  55. Ogawa R, Okai K, Tokumara F, Mori K, Ohmori Y, Huang C, et al. The relationship between skin stretching/contraction and pathologic scarring: the important role of mechanical forces in keloid generation. Wound Repair Regen. 2012;20:149–57.

    Article  PubMed  Google Scholar 

  56. Longaker MT, Rohrich RJ, Greenberg L, Furnas H, Wald R, Bansal V, et al. A randomized controlled trial of the embrace advanced scar therapy device to reduce incisional scar formation. Plast Reconstr Surg. 2014;134:536–46 .This randomized controlled trial found improved clinical scar outcomes after treatment of patients with a tension-offloading device, Embrace Advanced Scar Therapy device, post-abdominoplasty as compared to controls

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Christensen E, Warloe T, Kroon S, Funk J, Helsing P, Soler AM, et al. Guidelines for practical use of MAL-PDT in non-melanoma skin cancer. J Eur Acad Dermatol Venereol. 2010;24:505–12.

    Article  CAS  PubMed  Google Scholar 

  58. Calzavara-Pinton PG, Venturini M, Sala R. Photodynamic therapy: update 2006. Part I: photochemistry and photobiology. J Eur Acad Dermatol Venereol. 2007;21:293–302.

    Article  CAS  PubMed  Google Scholar 

  59. Braathen LR, Szeimies RM, Basset-Seguin N, Bissonnette R, Foley P, Pariser D, et al. Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer: an international consensus. Internal Society for Photodynamic Therapy in Dermatology, 2005. J Am Acad Dermatol. 2007;56:125–43.

    Article  PubMed  Google Scholar 

  60. Peng Q, Soler AM, Warloe T, Nesland JM, Giercksky KE. Selective distribution of porphyrins in skin thick basal cell carcinoma after topical application of methyl 5-aminolevulinate. J Photochem Photobiol B. 2001;62:140–5.

    Article  CAS  PubMed  Google Scholar 

  61. Ud-Din S, Thomas G, Morris J, Bayat A. Photodynamic therapy: an innovative approach to the treatment of keloid disease evaluated using subjective and objective non-invasive tools. Arch Dermatol Res. 2013;305:205–14.

    Article  CAS  PubMed  Google Scholar 

  62. Tanaydin V, Beugels J, Piatkowski A, Colla C, van den Kerckhove E, Hugenholtz GC, et al. Efficacy of custom-made pressure clips for ear keloid treatment after surgical excision. J Plast Reconstr Aesthet Surg. 2016;69:115–21 .This study evaluated custom-molded earclips as adjuvant therapy post-excision of earlobe keloids and found recurrence rate of 29.5%

    Article  CAS  PubMed  Google Scholar 

  63. Hayashi T, Furukawa H, Oyama A, Funayama E, Saito A, Murao N, et al. A new uniform protocol of combined corticosteroid injections and ointment application reduces recurrence rates after surgical keloid/hypertrophic scar excision. Dermatol Surg. 2012;38:893–7.

    Article  CAS  PubMed  Google Scholar 

  64. Darougheh A, Asilian A, Shariati F. Intralesional triamcinolone alone or in combination with 5-fluorouracil for the treatment of keloid and hypertrophic scars. Clin Exp Dermatol. 2009;34:219–23.

    Article  CAS  PubMed  Google Scholar 

  65. Nanda S, Reddy BS. Intralesional 5-fluorouracil as a treatment modality of keloids. Dermatol Surg. 2004;30:54–6.

    PubMed  Google Scholar 

  66. Bijlard E, Steltenpool S, Niessen FB. Intralesional 5-fluorouracil in keloid treatment: a systematic review. Acta Derm Venereol. 2015;95:778–82 .This systematic review found that combination therapy of 5-fluorouracil with triamcinolone was superior to triamcinolone or 5-fluorouracil alone

    CAS  PubMed  Google Scholar 

  67. Shin JY, Kim JS. Could 5-fluorouracil or triamcinolone be an effective treatment option for keloid after surgical excision? A meta-analysis. J Oral Maxillofac Surg. 2016;74:1055–60 .This meta-analysis found lower recurrence rates post-keloid excision in subjects treated with 5-fluorouracil than triamcinolone

    Article  PubMed  Google Scholar 

  68. Margaret Shanthi FX, Ernest K, Dhanraj P. Comparison of intralesional verapamil with intralesional triamcinolone in the treatment of hypertrophic scars and keloids. Indian J Dermtol Venereol Leprol. 2008;74:343–8.

    Article  CAS  Google Scholar 

  69. Danielsen PL, Rea SM, Wood FM, Fear MW, Viola HM, Hool LC, et al. Verapamil is less effective than triamcinolone for prevention of keloid scar recurrence after excision in a randomized controlled trial. Acta Derm Venereol. 2016 Feb 25. doi:10.2340/00015555-2384 .This study was a double-blind, randomized controlled trial with a split-scar design that compared intralesional verapamil to intralesional triamcinolone. The authors demonstrated a higher recurrence with verapamil as compared to triamcinolone

  70. Keeling BH, Whitsitt J, Liu A, Dunnick CA. Keloid removal by shave excision with adjuvant external beam radiation therapy. Dermatol Surg. 2015;41:989–92.

    Article  CAS  PubMed  Google Scholar 

  71. van Leewen MC, Stokmans SC, Bulstra AE, Meijer OW, Heymans MW, Ket JC, et al. Surgical excision with adjuvant irradiation for treatment of keloid scars: a systematic review. Plast Reconstr Surg Glob Open. 2015;3 :–e440.This systematic review evaluated the role of radiation therapy as adjuvant treatment post-excision of keloids. The authors found that high-dose brachytherapy had lower recurrence rates as compared to low-dose brachytherapy and external radiation, and that shorter intervals between excision and radiation resulted in lower recurrence rates

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Berman.

Ethics declarations

Conflict of Interest

Brian Berman reports others from Pfizer, GSK, Sensus, Clark, Exeltis, Halscion, Miragen, and Halscion, outside the submitted work.

Andrea Maderal declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Wound Care and Healing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maderal, A.D., Berman, B. Updates on Keloidal Wound Healing. Curr Derm Rep 5, 252–259 (2016). https://doi.org/10.1007/s13671-016-0155-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-016-0155-4

Keywords

Navigation