Skip to main content

Advertisement

Log in

Allergy to Hematophagous Arthropods Bites

  • Immunology (HC Lima, Section Editor)
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Allergies to hematophagous arthropod bites are inflammatory reactivity to arthropods salivary components. They vary in intensity and quality dependent upon the arthropod species and the individual immune response to specific proteins of the insect’s saliva. Individuals who were not previously exposed show mild localized reactions not beyond those expected by pharmacological substances present in arthropods’ saliva. Allergic reactions are immunological in their nature and the diversity derived from hypersensitivity reactions with different levels of participation of the immune system components. Some are mainly derived from a humoral immune response, and others are based predominantly on T-lymphocyte-mediated. The majority of these undesired biological answers are self-limited, and few may cause a systemic reaction. This article intends to discuss the immunological ingredients of this evolutionary interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pollack RJ, Marcus LC. A travel medicine guide to arthropods of medical importance. Infect Dis Clin N Am. 2005;19(1):169–83.

    Article  Google Scholar 

  2. Singh S, Mann BK. Insect bite reactions. Indian J Dermatol Venereol Leprol. 2013;79(2):151–64. This article is a good review about insect bite reaction and treatment.

    Article  PubMed  Google Scholar 

  3. Galun R. The evolution of purinergic receptors involved in recognition of a blood meal by hematophagous insects. Mem Inst Oswaldo Cruz. 1987;82 Suppl 3:5–9.

    Article  PubMed  Google Scholar 

  4. Tan JW, Campbell DE. Insect allergy in children. J Paediatr Child Health. 2013;49(9):E381–7.

    Article  PubMed  Google Scholar 

  5. Kulthanan K, Wongkamchai S, Triwongwaranat D. Mosquito allergy: clinical features and natural course. J Dermatol. 2010;37(12):1025–31. The purpose of this study was to assess the clinical features of Thai patients with mosquito allergy and to deline the natural desensitization course. It demonstrated that most patients with mosquito allergy had limited cutaneous symptoms. Natural desensitized duration was longer than the time previously reported in the laboratory test.

    Article  PubMed  Google Scholar 

  6. Ellis AK, Day JH. Clinical reactivity to insect stings. Curr Opin Allergy Clin Immunol. 2005;5(4):349–54.

    Article  PubMed  Google Scholar 

  7. Smith KJ et al. Exaggerated insect bite reactions in patients positive for HIV. Military Medical Consortium for the Advancement of Retroviral Research. J Am Acad Dermatol. 1993;29(2 Pt 1):269–72.

    Article  CAS  PubMed  Google Scholar 

  8. Izadpanah A, Gallo RL. Antimicrobial peptides. J Am Acad Dermatol. 2005;52(3 Pt 1):381–90. quiz 391-2.

    Article  PubMed  Google Scholar 

  9. Kanitakis J. Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol. 2002;12(4):390–9. quiz 400-1.

    PubMed  Google Scholar 

  10. Colditz IG. The induction of plasma leakage in skin by histamine, bradykinin, activated complement, platelet-activating factor and serotonin. Immunol Cell Biol. 1991;69(Pt 3):215–9.

    Article  CAS  PubMed  Google Scholar 

  11. Bos JD. The skin as an organ of immunity. Clin Exp Immunol. 1997;107 Suppl 1:3–5.

    PubMed  Google Scholar 

  12. Morfin Maciel B. Prurigo por insecto. Rev Alerg Mex. 2003;50(4):154–60.

    PubMed  Google Scholar 

  13. Klotz JH et al. Adverse reactions to ants other than imported fire ants. Ann Allergy Asthma Immunol. 2005;95(5):418–25.

    Article  PubMed  Google Scholar 

  14. Rash LD, Hodgson WC. Pharmacology and biochemistry of spider venoms. Toxicon. 2002;40(3):225–54.

    Article  CAS  PubMed  Google Scholar 

  15. Petroianu G et al. Phospholipase A2-induced coagulation abnormalities after bee sting. Am J Emerg Med. 2000;18(1):22–7.

    Article  CAS  PubMed  Google Scholar 

  16. Fitzgerald KT, Flood AA. Hymenoptera stings. Clin Tech Small Anim Pract. 2006;21(4):194–204.

    Article  PubMed  Google Scholar 

  17. Tracy JM. Insect allergy. Mt Sinai J Med. 2011;78(5):773–83.

    Article  PubMed  Google Scholar 

  18. Waage JK, Nondo J. Host behaviour and mosquito feeding success: an experimental study. Trans R Soc Trop Med Hyg. 1982;76(1):119–22.

    Article  CAS  PubMed  Google Scholar 

  19. Klowden MJ, Lea AO. Effect of defensive host behavior on the blood meal size and feeding success of natural populations of mosquitoes (Diptera: Culicidae). J Med Entomol. 1979;15(5–6):514–7.

    CAS  PubMed  Google Scholar 

  20. Kelly DW. Why are some people bitten more than others? Trends Parasitol. 2001;17(12):578–81.

    Article  CAS  PubMed  Google Scholar 

  21. Muller U, Johansson SG, Streit C. Hymenoptera sting hypersensitivy: IgE, IgG and haemagglutinating antibodies to bee venom constituents in relation to exposure and clinical reaction to bee stings. Clin Allergy. 1978;8(3):267–72.

    Article  CAS  PubMed  Google Scholar 

  22. Calvo E et al. The sialotranscriptome of adult male Anopheles gambiae mosquitoes. Insect Biochem Mol Biol. 2006;36(7):570–5.

    Article  CAS  PubMed  Google Scholar 

  23. Ribeiro JM, Garcia ES. Platelet antiaggregating activity in the salivary secretion of the blood sucking bug Rhodnius prolixus. Experientia. 1981;37(4):384–6.

    Article  CAS  PubMed  Google Scholar 

  24. Lima HC, Titus RG. Effects of sand fly vector saliva on development of cutaneous lesions and the immune response to Leishmania braziliensis in BALB/c mice. Infect Immun. 1996;64(12):5442–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Oka K et al. A study of mosquito salivary gland components and their effects on man. J Dermatol. 1989;16(6):469–74.

    CAS  PubMed  Google Scholar 

  26. Kim SH, Kim DH, Lee KG. Prominent Langerhans’ cell migration in the arthropod bite reactions simulating Langerhans’ cell histiocytosis. J Cutan Pathol. 2007;34(12):899–902.

    Article  PubMed  Google Scholar 

  27. Calvo E et al. Function and evolution of a mosquito salivary protein family. J Biol Chem. 2006;281(4):1935–42.

    Article  CAS  PubMed  Google Scholar 

  28. Hall LR, Titus RG. Sand fly vector saliva selectively modulates macrophage functions that inhibit killing of Leishmania major and nitric oxide production. J Immunol. 1995;155(7):3501–6.

    CAS  PubMed  Google Scholar 

  29. Monteiro MC et al. Effect of Lutzomyia longipalpis salivary gland extracts on leukocyte migration induced by Leishmania major. Am J Trop Med Hyg. 2007;76(1):88–94.

    PubMed  Google Scholar 

  30. Titus RG, Bishop JV, Mejia JS. The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunol. 2006;28(4):131–41.

    CAS  PubMed  Google Scholar 

  31. Bluestone JA et al. TCR gamma delta cells: a specialized T-cell subset in the immune system. Annu Rev Cell Dev Biol. 1995;11:307–53.

    Article  CAS  PubMed  Google Scholar 

  32. den Brok MH et al. Dendritic cells: tools and targets for antitumor vaccination. Expert Rev Vaccines. 2005;4(5):699–710.

    Article  Google Scholar 

  33. Loy AL, Goodnow CC. Novel approaches for identifying genes regulating lymphocyte development and function. Curr Opin Immunol. 2002;14(2):260–5.

    Article  CAS  PubMed  Google Scholar 

  34. Mellink JJ, Vos BJ. Primary lymph node responses to mosquito bites. Z Parasitenkd. 1977;51(2):187–98.

    Article  CAS  PubMed  Google Scholar 

  35. Arlian LG. Arthropod allergens and human health. Annu Rev Entomol. 2002;47:395–433.

    Article  CAS  PubMed  Google Scholar 

  36. Vychodilova L et al. Immunogenomic analysis of insect bite hypersensitivity in a model horse population. Vet Immunol Immunopathol. 2013;152(3–4):260–8.

    Article  CAS  PubMed  Google Scholar 

  37. Klumplerova M et al. Major histocompatibility complex and other allergy-related candidate genes associated with insect bite hypersensitivity in Icelandic horses. Mol Biol Rep. 2013;40(4):3333–40.

    Article  CAS  PubMed  Google Scholar 

  38. McCormack DR et al. Mosquito bite anaphylaxis: immunotherapy with whole body extracts. Ann Allergy Asthma Immunol. 1995;74(1):39–44.

    CAS  PubMed  Google Scholar 

  39. Peng Z et al. Evidence for natural desensitization to mosquito salivary allergens: mosquito saliva specific IgE and IgG levels in children. Ann Allergy Asthma Immunol. 2004;93(6):553–6.

    Article  CAS  PubMed  Google Scholar 

  40. Graif Y et al. Increased rate and greater severity of allergic reactions to insect sting among schoolchildren with atopic diseases. Pediatr Allergy Immunol. 2009;20(8):757–62.

    Article  PubMed  Google Scholar 

  41. Engler RJ. Mosquito bite pathogenesis in necrotic skin reactors. Curr Opin Allergy Clin Immunol. 2001;1(4):349–52.

    Article  CAS  PubMed  Google Scholar 

  42. Ishihara S et al. Clonal lymphoproliferation following chronic active Epstein–Barr virus infection and hypersensitivity to mosquito bites. Am J Hematol. 1997;54(4):276–81.

    Article  CAS  PubMed  Google Scholar 

  43. Demain JG, Minaei AA, Tracy JM. Anaphylaxis and insect allergy. Curr Opin Allergy Clin Immunol. 2010;10(4):318–22.

    Article  PubMed  Google Scholar 

  44. Peng Z, Yang M, Simons FE. Immunologic mechanisms in mosquito allergy: correlation of skin reactions with specific IgE and IgG antibodies and lymphocyte proliferation response to mosquito antigens. Ann Allergy Asthma Immunol. 1996;77(3):238–44.

    Article  CAS  PubMed  Google Scholar 

  45. Oka K. Correlation of Aedes albopictus bite reaction with IgE antibody assay and lymphocyte transformation test to mosquito salivary antigens. J Dermatol. 1989;16(5):341–7.

    CAS  PubMed  Google Scholar 

  46. Peng Z et al. Mosquito saliva-specific IgE and IgG antibodies in 1059 blood donors. J Allergy Clin Immunol. 2002;110(5):816–7.

    Article  PubMed  Google Scholar 

  47. Ellis JA et al. Lesions and saliva-specific antibody responses in rabbits with immediate and delayed hypersensitivity reactions to the bites of Glossina morsitans centralis. Vet Pathol. 1986;23(6):661–7.

    CAS  PubMed  Google Scholar 

  48. Chen YL, Simons FE, Peng Z. A mouse model of mosquito allergy for study of antigen-specific IgE and IgG subclass responses, lymphocyte proliferation, and IL-4 and IFN-gamma production. Int Arch Allergy Immunol. 1998;116(4):269–77.

    Article  CAS  PubMed  Google Scholar 

  49. Mellanby K. Man’s reaction to mosquito bites. Nature. 1946;158(4016):554.

    Article  CAS  PubMed  Google Scholar 

  50. Cabrera RM et al. Parasitic infection. In: Bos JD, editor. Skin immune system (SIS): cutaneous immunology and clinical immunodermatology. Boca Raton: CRC Press; 2005. p. 669–89.

    Google Scholar 

  51. Benjamini E, Feingold BF, Kartman L. Skin reactivity in guinea pigs sensitized to flea bites: the sequence of reactions. Proc Soc Exp Biol Med. 1961;108:700–2.

    Article  CAS  PubMed  Google Scholar 

  52. Sansom JE, Reynolds NJ, Peachey RD. Delayed reaction to bed bug bites. Arch Dermatol. 1992;128(2):272–3.

    Article  CAS  PubMed  Google Scholar 

  53. Palosuo K et al. Seasonal increase in human IgE and IgG4 antisaliva antibodies to Aedes mosquito bites. Int Arch Allergy Immunol. 1997;114(4):367–72.

    Article  CAS  PubMed  Google Scholar 

  54. Meulenbroeks C et al. Seasonal differences in cytokine expression in the skin of Shetland ponies suffering from insect bite hypersensitivity. Vet Immunol Immunopathol. 2013;151(1–2):147–56.

    Article  CAS  PubMed  Google Scholar 

  55. Bernhard JD. Itch and pruritus: what are they, and how should itches be classified? Dermatol Ther. 2005;18(4):288–91.

    Article  PubMed  Google Scholar 

  56. Tonussi CR, Ferreira SH. Tumour necrosis factor-alpha mediates carrageenin-induced knee-joint incapacitation and also triggers overt nociception in previously inflamed rat knee-joints. Pain. 1999;82(1):81–7.

    Article  CAS  PubMed  Google Scholar 

  57. Greaves MW. Recent advances in pathophysiology and current management of itch. Ann Acad Med Singap. 2007;36(9):788–92.

    PubMed  Google Scholar 

  58. Pipkorn U, Andersson M. Topical dermal anaesthesia inhibits the flare but not the weal response to allergen and histamine in the skin-prick test. Clin Allergy. 1987;17(4):307–11.

    Article  CAS  PubMed  Google Scholar 

  59. Durate ID, Lorenzetti BB, Ferreira SH. Peripheral analgesia and activation of the nitric oxide-cyclic GMP pathway. Eur J Pharmacol. 1990;186(2–3):289–93.

    Article  CAS  PubMed  Google Scholar 

  60. Serafin WE, Austen KF. Mediators of immediate hypersensitivity reactions. N Engl J Med. 1987;317(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  61. Karppinen A et al. Rupatadine 10 mg in the treatment of immediate mosquito-bite allergy. J Eur Acad Dermatol Venereol. 2012;26(7):919–22. This double-blind, placebo-controlled study performed in 30 mosquito-bite allergic subjects with A. aegypti evaluated the effectiveness of prophylactically administered rupatadine against immediate and delayed symptoms caused by mosquito bites. It showed that prophylactically administered rupatadine 10 mg has a significant decreasing effect on the size of immediate bite lesions and intensity of the accompanying pruritus.

    Article  CAS  PubMed  Google Scholar 

  62. Freye HB, Litwin C. Coexistent anaphylaxis to Diptera and Hymenoptera. Ann Allergy Asthma Immunol. 1996;76(3):270–2.

    Article  CAS  PubMed  Google Scholar 

  63. Hassoun S, Drouet M, Sabbah A. Anaphylaxie au moustique: a propos de 2 cas cliniques. Allerg Immunol (Paris). 1999;31(8):285–7.

    CAS  Google Scholar 

  64. Fernandez-Soto P et al. Tick-bite-induced anaphylaxis in Spain. Ann Trop Med Parasitol. 2001;95(1):97–103.

    Article  CAS  PubMed  Google Scholar 

  65. Moffitt JE et al. Allergic reactions to Triatoma bites. Ann Allergy Asthma Immunol. 2003;91(2):122–8. quiz 128-30, 194.

    Article  PubMed  Google Scholar 

  66. Agarwal MK et al. Etiologic significance of mosquito (Anopheles stephensi) in respiratory allergy in India. Ann Allergy. 1991;67(6):598–602.

    CAS  PubMed  Google Scholar 

  67. Reunala T et al. Passive transfer of cutaneous mosquito-bite hypersensitivity by IgE anti-saliva antibodies. J Allergy Clin Immunol. 1994;94(5):902–6.

    Article  CAS  PubMed  Google Scholar 

  68. Owhashi M et al. The role of saliva of Anopheles stephensi in inflammatory response: identification of a high molecular weight neutrophil chemotactic factor. Parasitol Res. 2001;87(5):376–82.

    Article  CAS  PubMed  Google Scholar 

  69. Lazoglu AH et al. Serum sickness reaction following multiple insect stings. Ann Allergy Asthma Immunol. 1995;75(6 Pt 1):522–4.

    CAS  PubMed  Google Scholar 

  70. deShazo RD et al. Bullous reactions to bedbug bites reflect cutaneous vasculitis. Am J Med. 2012;125(7):688–94. This case report took advantage of an unique opportunity prospectively to evaluate bullous cutaneous reactions to bedbug bites and to perform sequential histopathologic studies to better understand their mechanism and guide therapy. The results demonstrated indicate the presence of a highly inflammatory, acute cutaneous vasculitis. The findings suggest that early use of highpotency topical corticosteroids plus oral antihistamines are likely to be the treatment of choice in individuals who develop bullous reactions to bedbug bites. Oral corticosteroids may be required in patients with diffuse bullous reactions.

    Article  PubMed  Google Scholar 

  71. Mizuki M et al. Natural killer cell-derived large granular lymphocyte lymphoma of lung developed in a patient with hypersensitivity to mosquito bites and reactivated Epstein–Barr virus infection. Am J Hematol. 1998;59(4):309–15.

    Article  CAS  PubMed  Google Scholar 

  72. Morsy TA. Insect bites and what is eating you? J Egypt Soc Parasitol. 2012;42(2):291–308. This study delineates the broad extent of a recent resurgence of bed bug infestations in an urban environment.

    PubMed  Google Scholar 

  73. Gaig P et al. Serum sickness-like syndrome due to mosquito bite. J Investig Allergol Clin Immunol. 1999;9(3):190–2.

    CAS  PubMed  Google Scholar 

  74. Allen JR. Passive transfer between experimental animals of hypersensitivity to Aedes aegypti bites. Exp Parasitol. 1966;19(1):132–7.

    Article  CAS  PubMed  Google Scholar 

  75. Johnston CM, Brown SJ. Cutaneous and systemic cellular responses induced by the feeding of the argasid tick Ornithodoros parkeri. Int J Parasitol. 1985;15(6):621–8.

    Article  CAS  PubMed  Google Scholar 

  76. Naessens J et al. Local skin reaction (chancre) induced following inoculation of metacyclic trypanosomes in cattle by tsetse flies is dependent on CD4 T lymphocytes. Parasite Immunol. 2003;25(8–9):413–9.

    Article  PubMed  Google Scholar 

  77. Oliveira F et al. Delayed-type hypersensitivity to sand fly saliva in humans from a leishmaniasis-endemic area of Mali is Th1-mediated and persists to midlife. J Investig Dermatol. 2013;133(2):452–9. This large cohort study demontrated that exposure to sand fly bites induces a TH1-biased DTH response in inhabitants of a CL-endemic area over a considerable period of their lifetime. This study highlights the evolution of the DTH response to sand fly bites in a naturally exposed human population and establishes the TH1 nature of this response at the bite site.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Shibasaki M, Sumazaki R, Takita H. Hypersensitive reactions to mosquito bites in congenital agammaglobulinemia. Ann Allergy. 1986;56(1):81–4.

    CAS  PubMed  Google Scholar 

  79. Killby VA, Silverman PH. Hypersensitive reactions in man to specific mosquito bites. Am J Trop Med Hyg. 1967;16(3):374–80.

    CAS  PubMed  Google Scholar 

  80. Heng MC et al. Alpha-1 antitrypsin deficiency in a patient with widespread prurigo nodularis. Australas J Dermatol. 1991;32(3):151–7.

    Article  CAS  PubMed  Google Scholar 

  81. Weed RI. Exaggerated delayed hypersensitivity to mosquito bites in chronic lymphocytic leukemia. Blood. 1965;26:257–68.

    CAS  PubMed  Google Scholar 

  82. Tokura Y et al. Hypersensitivity to mosquito bites as the primary clinical manifestation of a juvenile type of Epstein–Barr virus-associated natural killer cell leukemia/lymphoma. J Am Acad Dermatol. 2001;45(4):569–78.

    Article  CAS  PubMed  Google Scholar 

  83. Seon HS et al. A case of hypersensitivity to mosquito bites without peripheral natural killer cell lymphocytosis in a 6-year-old Korean boy. J Korean Med Sci. 2013;28(1):164–6. This study investigated a patient diagnosed without NK cell but developing severe reaction to insect bite. This indicates the risk for lymphoma evolution.

  84. Tokura Y et al. Enhanced T-cell response to mosquito extracts by NK cells in hypersensitivity to mosquito bites associated with EBV infection and NK cell lymphocytosis. Cancer Sci. 2005;96(8):519–26.

    Article  CAS  PubMed  Google Scholar 

  85. Simons FE, Peng Z. Skeeter syndrome. J Allergy Clin Immunol. 1999;104(3 Pt 1):705–7.

    Article  CAS  PubMed  Google Scholar 

  86. Reunala T, Brummer-Korvenkontio H, Palosuo T. Are we really allergic to mosquito bites? Ann Med. 1994;26(4):301–6.

    Article  CAS  PubMed  Google Scholar 

  87. Rogers KA, Titus RG. Immunomodulatory effects of Maxadilan and Phlebotomus papatasi sand fly salivary gland lysates on human primary in vitro immune responses. Parasite Immunol. 2003;25(3):127–34.

    Article  CAS  PubMed  Google Scholar 

  88. Cavassani KA et al. Tick saliva inhibits differentiation, maturation and function of murine bone-marrow-derived dendritic cells. Immunology. 2005;114(2):235–45.

    Article  CAS  PubMed  Google Scholar 

  89. Valenzuela JG. High-throughput approaches to study salivary proteins and genes from vectors of disease. Insect Biochem Mol Biol. 2002;32(10):1199–209.

    Article  CAS  PubMed  Google Scholar 

  90. Hamza E et al. In vitro induction of functional allergen-specific CD4+ CD25high Treg cells in horses affected with insect bite hypersensitivity. Clin Exp Allergy. 2013;43(8):889–901.

    Article  CAS  PubMed  Google Scholar 

  91. Dominguez-Amorocho O et al. Differences in systemic and skin migrating-specific CD4 T cells in papular urticaria by flea bite. Int Arch Allergy Immunol. 2013;160(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  92. Peng Z, Simons FE. Mosquito allergy: immune mechanisms and recombinant salivary allergens. Int Arch Allergy Immunol. 2004;133(2):198–209.

    Article  CAS  PubMed  Google Scholar 

  93. Peng Z, Simons FE. Advances in mosquito allergy. Curr Opin Allergy Clin Immunol. 2007;7(4):350–4.

    Article  CAS  PubMed  Google Scholar 

  94. Williams LA, Allen Jr LV. Treatment and prevention of insect bites: mosquitoes. Int J Pharm Compd. 2012;16(3):210–8.

    PubMed  Google Scholar 

  95. Scheinfeld NS. Insect repellent: more attractive to people, less attraction for insects? Cutis. 2006;77(5):281–2.

    PubMed  Google Scholar 

  96. Fradin MS, Day JF. Comparative efficacy of insect repellents against mosquito bites. N Engl J Med. 2002;347(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  97. Zwermann O et al. ACTH 1-24 inhibits proliferation of adrenocortical tumors in vivo. Eur J Endocrinol. 2005;153(3):435–44.

    Article  CAS  PubMed  Google Scholar 

  98. Bilo MB. Anaphylaxis caused by Hymenoptera stings: from epidemiology to treatment. Allergy. 2011;66 Suppl 95:35–7.

    Article  PubMed  Google Scholar 

  99. Mejia JS, Bishop JV, Titus RG. Is it possible to develop pan-arthropod vaccines? Trends Parasitol. 2006;22(8):367–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Tony and Blazenka Matic for their assistance and review. We regret to acknowledge the death of Richard Titus, an expert in insect bite immunology in January, 2013.

Compliance with Ethics Guidelines

Conflict of Interest

MA Miot declares no conflicts of interest.

HC Lima declares no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermenio C. Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miot, H.A., Lima, H.C. Allergy to Hematophagous Arthropods Bites. Curr Derm Rep 3, 6–12 (2014). https://doi.org/10.1007/s13671-013-0065-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-013-0065-7

Keywords

Navigation