Skip to main content
Log in

Multiresponse Optimization of Pulsed-Current Gas Tungsten Arc Welding (PCGTAW) for AISI 304 Stainless Steel to St 52 Steel Dissimilar Welds

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

AISI 304 stainless steel and St 52 steel were dissimilar welded together by pulsed-current gas tungsten arc welding (PCGTAW). The multiresponse Taguchi method was used to optimize the PCGTAW parameters for average microhardness and corrosion potential (E corr) of weld metal. For three factors (pulse current, background current, and pulse frequency) at two levels, an L4 (23) orthogonal array was selected. Microstructure and microhardness of weldment were evaluated by light microscopy and Vickers microhardness (HV0.3). Corrosion resistance of fusion zone in 3.5% NaCl solution was studied using potentiodynamic polarization. The ferritescope was also used to observe the ferrite content on the fusion zone. Multiresponse signal-to-noise ratios and analysis of variance on the measured data were used to identify the optimal levels and relative influence of factors on the variation of the multiple performance characteristics by assigning equal weights to response factors. The results show that the fusion zone microstructure exhibited skeletal delta ferrite in austenite matrix with different ferrite content. Within the selected parameter values, the optimum conditions for microhardness and E corr were found to correspond to the first level of pulse current (130 A), second level of background current (100 A), and second level of pulse frequency (4 Hz), for constant percentage on-time (50%). The pulse frequency, making a 82.436% contribution, was found to be an effective factor for improvement of microhardness and E corr of fusion zone, followed in importance by the background current factor with a 16.47% contribution, while the pulse current had less effect compared with the other factors. In this regard, good agreement between the predicted and experimental output factor results is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Norish, Advanced Welding Processes (Woodhead, Cambridge, 2006)

    Book  Google Scholar 

  2. V. Balasubramanian, V. Ravisankar, G.M. Reddy, Effect of pulsed current welding on mechanical properties of high strength aluminum alloy. Int. J. Adv. Manuf. Technol. 36, 254–262 (2008)

    Article  Google Scholar 

  3. E. Farahani, M. Shamanian, F. Ashrafizadeh, A comparative study on direct and pulsed current gas tungsten arc welding of alloy 617. AMAE Int. J. Manuf. Mater. Sci. 2(1), 1–6 (2012)

    Google Scholar 

  4. A. Namjou, R. Dehmolaei, A. Ashrafi, A comparative study on direct and pulsed current gas tungsten arc welding of 25Cr–35Ni heat resistant steel. Int. J. Nat. Eng. Sci. 8, 22–28 (2014)

    Google Scholar 

  5. J.C. Lippold, D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels (Wiley, Hoboken, 2005)

    Google Scholar 

  6. S.H.C.P. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, H. Inagaki, Corrosion resistance of friction stir welded 304 stainless steel. Scripta Mater. 51, 101–105 (2004)

    Article  Google Scholar 

  7. S. Saha, M. Mukherjee, T.K. Pal, Microstructure, texture, and mechanical property analysis of gas metal arc welded AISI 304 austenitic stainless steel. J. Mater. Eng. Perform. 24, 1125–1139 (2015)

    Article  Google Scholar 

  8. G.S. Chander, G.M. Reddy, G.R.N. Tagore, Influence of process parameters on impact toughness and hardness of dissimilar AISI 4140 and AISI 304. Int. J. Adv. Manuf. Technol. 64, 1445–1457 (2013)

    Article  Google Scholar 

  9. N. Arivazhagan, S. Singh, S. Prakash, G.M. Reddy, Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding. Mater. Des. 32, 3036–3050 (2011)

    Article  Google Scholar 

  10. W. Chuaiphan, L. Srijaroenpramong, The behaviour of nitrogen on the welding parameters of the dissimilar weld joints between AISI 304 and AISI 316L austenitic stainless steels produced by gas tungsten arc welding. Appl. Mech. Mater. 248, 395–401 (2013)

    Article  Google Scholar 

  11. S.E. Manuela, P. Alexandru, R.I. Claudiu, Edge fillet laser welding of AISI 304 stainless steel. Solid State Phenom. 216, 304–309 (2014)

    Article  Google Scholar 

  12. S. Shamsudin, P.C. Yoon, Investigation on mechanical properties of pulsed Nd:YAG laser welding on AISI 304 stainless steel to AISI 1008 steel. Appl. Mech. Mater. 117, 402–408 (2012)

    Google Scholar 

  13. S. Kumar, A.S. Shahi, Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints. Mater. Des. 32, 3617–3623 (2011)

    Article  Google Scholar 

  14. W. Chuaiphan, S. Chandra-ambhorn, S. Niltawach, B. Sorni, Dissimilar welding between AISI 304 stainless steel and AISI 1020 carbon steel plates. Appl. Mech. Mater. 268, 283–290 (2013)

    Google Scholar 

  15. I. Hajiannia, M. Shamanian, M. Kasiri, Microstructure and mechanical properties of AISI 347 stainless steel/A335 low alloy steel dissimilar joint produced by gas tungsten arc welding. Mater. Des. 50, 566–573 (2013)

    Article  Google Scholar 

  16. R. Deraman, M.N. Berhan, Quenching heat treatment effects on the mechanical and microstructure properties of AISI 304 type welded by GMAW process using different shielding gases. Appl. Mech. Mater. 465, 983–987 (2014)

    Google Scholar 

  17. M.H. Bina, M. Jamali, M. Shamanian, H. Sabet, Investigation on the resistance spot-welded austenitic/ferritic stainless steel. Int. J. Adv. Manuf. Technol. 75, 1371–1379 (2014)

    Article  Google Scholar 

  18. N. Charde, Microstructure and fatigue properties of dissimilar spot welded joints of AISI 304 and AISI 1008. Int. J. Autom. Mech. Eng. 7, 882–899 (2013)

    Article  Google Scholar 

  19. M. Habibnia, M. Shakeri, S. Nourouzi, M.K.B. Givi. Microstructural and mechanical properties of friction stir welded 5050 Al alloy and 304 stainless steel plates. Int. J. Adv. Manuf. Technol. 76, 819–825 (2015)

    Article  Google Scholar 

  20. A. Gholipour, M. Shamanian, F. Ashrafizadeh, Microstructure and wear behavior of stellite 6 cladding on 17–4 PH stainless steel. J. Alloys Compd. 509, 4905–4909 (2011)

    Article  Google Scholar 

  21. W. Chuaiphan, S. Chandra-ambhorn, B. Sornil, W. Bleck, Microstructure, mechanical and corrosion behaviour of dissimilar weldments between AISI 304 stainless steels and AISI 1020 carbon steels produced by gas tungsten arc welding using different consumables. Key Eng. Mater. 410, 533–541 (2009)

    Article  Google Scholar 

  22. ASTM G-5, Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements, 2004

  23. R.K. Roy, Design of Experiments Using Taguchi Approach (Wiley, New York, 2001)

    Google Scholar 

  24. J.L. Meseguer-Valdenebro, J. Serna, A. Portoles, M. Estrems, V. Miguel, E. Martínez-Conesa, Experimental validation of a numerical method that predicts the size of the heat affected zone. Optimization of the welding parameters by the Taguchi’s method. Trans. Indian Inst. Met. 69, 783–791 (2015)

    Article  Google Scholar 

  25. V. Chandrasekar, K. Kannan, R. Priyavarshini, R. Gayathri, Application of Taguchi method in optimization of process factors of ready to eat peanut (Arachis hypogaea) chutney. Int. Food Res. J. 22, 510–516 (2015)

    Google Scholar 

  26. E. Rastkerdar. Effect of the pulsed current in the GTAW process on corrosion behavior of AA5083 aluminum welds. Isfahan University of Technology, Department of Materials Engineering, M.Sc. Thesis (2010)

  27. M. Yousefieh, M. Shamanian, A.R. Arghavan, Analysis of design of experiments methodology for optimization of pulsed current GTAW process parameters for ultimate tensile strength of UNS S32760 welds. Metallogr. Microstruct. Anal. 1, 85–91 (2012)

    Article  Google Scholar 

  28. M. Yousefieh, M. Shamanian, A. Saatchi, Optimization of experimental conditions of the pulsed current GTAW parameters for mechanical properties of SDSS UNS S32760 welds based on the Taguchi design method. J. Mater. Eng. Perform. 21, 1978–1988 (2012)

    Article  Google Scholar 

  29. M. Yousefieh, M. Shamanian, A. Saatchi, Optimization of the pulsed current gas tungsten arc welding (PCGTAW) parameters for corrosion resistance of super duplex stainless steel (UNS S32760) welds using the Taguchi method. J. Alloys Compd. 509, 782–788 (2011)

    Article  Google Scholar 

  30. M. Karimi, M.R. Toroghinejad, K. Farmanesh, Multi-response optimization on the annealing of accumulative roll bonded monolithic Ti and Ti–SiCp composites. Mater. Des. 65, 34–41 (2015)

    Article  Google Scholar 

  31. S. Kou, Welding Metallurgy (Wiley, Hoboken, 2003)

    Google Scholar 

  32. M. Jafarzadegan, A.H. Feng, A. Abdollah-zadeh, T. Saeid, J. Shen, H. Assadi, Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel. Mater. Charact. 74, 28–41 (2012)

    Article  Google Scholar 

  33. J.N. DuPont, J.C. Lippold, S.D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys (Wiley, Hoboken, 2009)

    Book  Google Scholar 

  34. G.R. Mirshekari, E. Tavakoli, M. Atapour, B. Sadeghian, Microstructure and corrosion behavior of multipass gas tungsten arc welded 304L stainless steel. Mater. Des. 55, 905–911 (2014)

    Article  Google Scholar 

  35. W.H. Yang, Y.S. Tarng, Design optimization of cutting parameters for turning operations based on the Taguchi method. J. Mater. Process. Technol. 84, 122–129 (1998)

    Article  Google Scholar 

  36. C.C. Hsieh, D.Y. Lin, M.C. Chen, W. Wu, Microstructure, recrystallization, and mechanical property evolutions in the heat-affected and fusion zones of the dissimilar stainless steels. Mater. Trans. 48, 2898–2902 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kangazian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kangazian, J., Shamanian, M. Multiresponse Optimization of Pulsed-Current Gas Tungsten Arc Welding (PCGTAW) for AISI 304 Stainless Steel to St 52 Steel Dissimilar Welds. Metallogr. Microstruct. Anal. 5, 241–250 (2016). https://doi.org/10.1007/s13632-016-0277-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-016-0277-x

Keywords

Navigation