Skip to main content

Advertisement

Log in

An Investigation into the Fatigue Crack Growth Rate of Electron Beam-Welded H13 Tool Steel: Effect of Welding and Post-Weld Heat Treatment

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Fatigue crack growth rate (FCGR) behavior of 3-point bend specimen of electron beam-welded AISI H13 tool steel is studied. Three types of specimens were studied here; specifically: the base metal, as-welded, and post-heat-treated welded samples. The crack length is measured visually as well as calculated using crack mouth opening displacement (CMOD) gage. The FCGR curves of different specimens are compared. The validity of using CMOD as a tool for indirect crack length measurement as per ASTM E399 is explored. Additionally, the possibility of using CMOD as a crack driving force parameter instead of stress intensity range (ΔK) is explored. It is shown that the CMOD is a better crack driving force parameter and the indirect crack length measurement is not a reliable tool, especially for welded specimens. In the end, CMOD versus crack length is numerically simulated by finite element analysis to give us a base line CMOD versus crack length without microstructural or plasticity effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Sultan, R.A. Pasha, M. Ali, M.Z. Khan, M.A. Khan, N.U. Dar, M. Shah, Numerical simulation and experimental verification of CMOD in SENT specimen: application on FCGR of welded tool steel. Acta Metall. Sin. (Engl. Lett.) 26(1), 92–96 (2013)

    Article  Google Scholar 

  2. M.D. Chapetti, L.F. Jaureguizahar, Fatigue behavior prediction of welded joints by using an integrated fracture mechanics approach. Int. J. Fatigue 43, 43–53 (2012)

    Article  Google Scholar 

  3. A. Nishimura, N. Inoue, T. Muroga, Fracture toughness of low activation ferritic steel (JLF-1) weld joint at room temperature. J. Nucl. Mater. 258, 1242–1247 (1998)

    Article  Google Scholar 

  4. Q. Zhu, Y.-C. Lei, X.-Z. Chen, W.-J. Ren, X. Ju, Y.-M. Ye, Microstructure and mechanical properties in TIG welding of CLAM steel. Fusion Eng. Des. 86(4), 407–411 (2011)

    Article  Google Scholar 

  5. F. Medjedoub, G. Dour, S. Le Roux, P. Lamesle, M. Salem, P. Hairy, F. Rezai-Aria, Experimental conditions and environment effects on thermal fatigue damage accumulation and life of die-casting steel X38CrMoV5 (AISI H11). Int. J. Microstruct. Mater. Prop. 3(2), 336–349 (2008)

    Google Scholar 

  6. M. Salem, Etude de l’endommagement par fatigue thermique des moules de fonderie sous pression d’aluminium : effet de l’interaction avec l’aluminisation et l’oxydation. (PhD), University de Toulouse, Toulouse, France (2009)

  7. M. Shah, C. Mabru, C. Boher, S. Leroux, F. Rezai-Aria, Crack propagation in tool steel X38CrMoV5 (AISI H11) in SET specimens. Adv. Eng. Mater. 11(9), 746–749 (2009)

    Article  Google Scholar 

  8. M. Shah, C. Mabru, F. Rezai-Aria, Investigation of crack propagation in X38CrMoV5 (AISI H11) tool steel at elevated temperatures. Procedia Eng. 2(1), 2045–2054 (2010)

    Article  Google Scholar 

  9. A. Designation, E399-90. Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials (American Society for Testing Materials, Philadelphia, 1997). 1990

    Google Scholar 

  10. J. Coronado, C. Cerón, Fracture mechanisms of CTOD samples of submerged and flux cored arc welding. Theor. Appl. Fract. Mech. 53(2), 145–151 (2010)

    Article  Google Scholar 

  11. J.R. Davis, ASM Handbook: Properties and Selection: Irons, Steels, and High-Performance Alloys, vol. 1 (ASM International, Ohio, 1990)

    Google Scholar 

  12. A. Arain, Heat Treatment and Toughness Behavior of Tool Steels (D2 and H13) for Cutting Blades (University of Toronto, Toronto, 1999)

    Google Scholar 

  13. A.S.M. Handbook, Properties and Selection: Irons, Steels, and High Performance Alloys, vol. 1 (ASM International, Philadelphia, 2005), p. 1

    Google Scholar 

  14. S.M.R. Shah, Investigation of Crack Propagation in X38CrMoV5 Tool Steel at Room Temperature and 600°C on Small Scale Specimens (Universite de Toulouse, Universite Toulouse III-Paul Sabatier, Toulouse, 2010)

    Google Scholar 

  15. M. Shah, C. Boher, S. Leroux, F. Rezai-Aria, C. Mabru, An investigation of the crack propagation in tool steel X38CrMoV5 (AISI H11) in SET specimens. Revue de Metallurgie 106(03), 140–145 (2009)

    Article  Google Scholar 

  16. M. Shah, C. Mabru, F. Rezai-Aria, I. Souki, R.A. Pasha, An estimation of stress intensity factor in a clamped SE (T) specimen through numerical simulation and experimental verification: case of FCGR of AISI H 11 tool steel. Acta Metall. Sin. (Engl. Lett.) 25(4), 307–319 (2012)

    Google Scholar 

  17. G. Vander Voort, H. James, ASM Handbook, vol. 9 (ASM International, Novelty, 2004)

    Google Scholar 

  18. N.E. Dowling, J.A. Bagley, Fatigue Crack Growth During Gross Plasticity and the J-Integral. Mechanics of Crack Growth (American Society for Testing and Materials, Philadelphia, 1976), pp. 82–103

    Google Scholar 

  19. N.E. Dowling, Geometry Effects and J Integral Approach to Elastic-Plastic Fatigue Crack Growth (American Society for Testing and Materials, Philadelphia, 1976)

    Google Scholar 

  20. R.W. Hertzberg, Estimation procedure for determination of fatigue crack propagation in metal alloys. ASTM Spec. Tech. Publ. 1360, 263–277 (2000)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the contribution of the “Post Graduate Faculty Research Program” of the University of Engineering and Technology Taxila for the financing of this research work and the School of Chemical and Materials Engineering for the use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Sultan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, M., Ali, M., Sultan, A. et al. An Investigation into the Fatigue Crack Growth Rate of Electron Beam-Welded H13 Tool Steel: Effect of Welding and Post-Weld Heat Treatment. Metallogr. Microstruct. Anal. 3, 114–125 (2014). https://doi.org/10.1007/s13632-014-0128-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-014-0128-6

Keywords

Navigation