Skip to main content

Advertisement

Log in

La diagnostica di laboratorio delle malattie del surrene. Raccomandazioni pratiche per l’insufficienza surrenalica primaria

Laboratory diagnostics of adrenal diseases. Practice guidelines for primary adrenal insufficiency

  • Rassegna
  • Published:
La Rivista Italiana della Medicina di Laboratorio - Italian Journal of Laboratory Medicine

Riassunto

L’insufficienza surrenalica (IS) è una condizione clinica, potenzialmente pericolosa per la vita, determinata dalla diminuita produzione o azione degli ormoni glucocorticoidi, accompagnata o meno da carenza di mineralcorticoidi o androgeni surrenalici. È dovuta a un’alterazione dell’asse ipotalamo-ipofisi-surrene, per cause surrenaliche [insufficienza surrenalica primaria (ISP) o morbo di Addison], ipofisarie (insufficienza surrenalica secondaria) o ipotalamiche (insufficienza surrenalica terziaria). La prevalenza dell’ISP in Europa è di circa 100 casi per milione, l’incidenza 5 casi per milione/anno, con una frequenza maggiore nella quarta decade di vita e nel sesso femminile. Oggi l’82% dei casi di ISP ha eziologia autoimmune, il 9% infettiva e il 9% da altre cause. L’IS si differenzia in una forma acuta, che costituisce un’emergenza clinica con le manifestazioni proprie dello shock ipovolemico, e una forma cronica, caratterizzata da sintomi e segni che si aggravano progressivamente in base al grado e alla velocità di distruzione del surrene: astenia generalizzata, anoressia, calo ponderale, ipotensione, ipoglicemia, iperpigmentazione cutanea, amenorrea e diminuzione della libido, anemia e depressione. Le presenti raccomandazioni pratiche della Società Italiana di Patologia Clinica e Medicina di Laboratorio riprendono quelle della Endocrine Society del 2016 preparate utilizzando il sistema Grade. Le raccomandazioni principali ribadiscono che: (1) la misura basale di cortisolo sierico totale (CST), l’indice di cortisolo libero (ICL) e il cortisolo salivare del mattino (CSM), associati alla misura della corticotropina (ACTH), rappresentano i test di ingresso per la diagnosi di ISP (test combinato basale); (2) rilevare un valore elevato di renina attiva, associato a un valore basso-normale di aldosterone suggerisce l’esecuzione del test combinato basale; (3) rilevare un valore basso di deidroepiandrosterone solfato (DHEAS) suggerisce l’esecuzione del test combinato basale; (4) rilevare un valore di \(\text{CST}<140\ \mbox{nmol/L}\) (50 μg/L) o di ICL inferiore a 12 o di CSM inferiore a 4,1 nmol/L (1,5 μg/L), associata a un valore di ACTH superiore a 2 volte il limite superiore dell’intervallo di riferimento metodo-dipendente, è fortemente indicativa di ISP; (5) la conferma diagnostica di ISP va effettuata con il test dinamico all’ACTH a dose standard.

Summary

Adrenal insufficiency (AI) is a potentially life-threatening clinical condition caused by decreased production or action of glucocorticoid hormones, with or without deficiency of mineralocorticoid or adrenal androgens. It is due to an alteration of the hypothalamic-pituitary-adrenal axis, for adrenal causes [primary adrenal insufficiency (PAI) or Addison’s disease], pituitary (secondary adrenal insufficiency) or hypothalamic (tertiary adrenal insufficiency). The prevalence of PAI in Europe is about 100 cases per million/year, the incidence is 5 cases per million/year, with a higher frequency in the fourth decade of life and in females. Today 82% of the PAI cases have autoimmune etiology, 9% infectious and 9% other causes. The AI differs in an acute form, which is a medical emergency with hypovolemic shock and a chronic form, characterized by symptoms and signs that gradually worsen depending on the degree and speed of adrenal destruction: generalized weakness, anorexia, weight loss, hypotension, hypoglycemia, skin hyperpigmentation, amenorrhea and decreased libido, anemia and depression. These practical recommendations of the Italian Society of Clinical Pathology and Laboratory Medicine are consistent with those prepared in 2016 by the Endocrine Society using the GRADE system. The main recommendations reaffirm that: (1) the baseline measurement of serum total cortisol (STC) or the free cortisol index (FCI) or morning salivary cortisol (MSC), associated with adrenocorticotropin hormone (ACTH), represent the entrance test for the diagnosis of PAI (baseline combined test); (2) a high value of active renin, associated with a low-normal value of aldosterone should be confirmed by the baseline test combined; (3) a low value of dehydroepiandrosterone sulfate (DHEAS) should be confirmed by the baseline combined test; (4) a value of \(\text{STC}<140\ \mbox{nmol/L}\) (50 μg/L)/FCI lower than 12/MSC lower than 4.1 nmol/L (1.5 μg/L), associated with ACTH value greater than two times the upper limit of method-dependent reference, strongly indicates PAI; 5) the diagnostic confirmation of PAI must be done with ACTH test (standard dose).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Bibliografia

  1. Neary N, Nieman L (2010) Adrenal insufficiency: etiology, diagnosis, and treatment. Curr Opin Endocrinol Diabetes Obes 17:217–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Addison T (1855) On the constitutional and local effects of disease of supra-renal capsules. Samuel Highley, London

    Google Scholar 

  3. Betterle C (2009) Le malattie autoimmuni del surrene. In: Tozzoli R, Bizzaro N, Villalta D et al. (eds) Il laboratorio nelle malattie autoimmuni d’organo. Esculapio, Bologna, pp 173–202

    Google Scholar 

  4. Lovas K, Husebye ES (2002) High prevalence and increasing incidence of Addison’s disease in western Norway. Clin Endocrinol (Oxf) 56:787–791

    Article  Google Scholar 

  5. Charmandari E, Nicolaides NC, Chrousos GP (2014) Adrenal insufficiency. Lancet 383:2152–2167

    Article  CAS  PubMed  Google Scholar 

  6. Betterle C, Morlin L (2011) Autoimmune Addison’s disease. Endocr Dev 20:161–172

    CAS  PubMed  Google Scholar 

  7. Bornstein SR, Allolio B, Arlt W et al. (2016) Diagnosis and treatment of primary adrenal insufficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 101:364–389

    Article  CAS  PubMed  Google Scholar 

  8. Husebye ES, Allolio B, Artl W et al. (2014) Consensus statement on the diagnosis, treatment and follow up of patients with primary adrenal insufficiency. J Intern Med 275:104–115

    Article  CAS  PubMed  Google Scholar 

  9. Hinz LE, Kline GA, Dias VC (2014) Addison’s disease in evolution: an illustrative case and literature review. Endocr Pract 20:e176–e179

    Article  PubMed  Google Scholar 

  10. Michels A, Michels N (2014) Addison disease: early detection and treatment principles. Am Fam Physician 89:563–568

    PubMed  Google Scholar 

  11. Trifan A, Chiriac S, Stanciu C (2013) Update on adrenal insufficiency in patients with liver cirrhosis. World J Gastroenterol 19:445–456

    Article  PubMed  PubMed Central  Google Scholar 

  12. Klose M, Lange M, Rasmussen AK et al. (2007) Factors influencing the adrenocorticotropin test: role of contemporary cortisol assays, body composition, and oral contraceptive agents. J Clin Endocrinol Metab 92:1326–1333

    Article  CAS  PubMed  Google Scholar 

  13. Gatti R, Antonelli G, Prearo M et al. (2009) Cortisol assays and diagnostic laboratory procedures in human biological fluids. Clin Biochem 42:1205–1217

    Article  CAS  PubMed  Google Scholar 

  14. Roberts RF, Roberts WL (2004) Performance characteristics of five automated serum cortisol immunoassays. Clin Biochem 37:489–493

    Article  CAS  PubMed  Google Scholar 

  15. Hägg E, Asplund K, Lithner F (1987) Value of basal plasma cortisol assays in the assessment of pituitary-adrenal insufficiency. Clin Endocrinol (Oxf) 26:221–226

    Article  Google Scholar 

  16. Watts NB, Tindall GT (1988) Rapid assessment of corticotropin reserve after pituitary surgery. JAMA 259:708–711

    Article  CAS  PubMed  Google Scholar 

  17. Erturk E, Jaffe CA, Barkan AL (1998) Evaluation of integrity of the hypothalamic-pituitary-adrenal axis by insulin hypoglycemia test. J Clin Endocrinol Metab 83:2350–2354

    CAS  PubMed  Google Scholar 

  18. Le Roux CW, Meeran K, Alaghband-Zadeh J (2002) Is a 0900-h serum cortisol useful prior to a short synacthen test in outpatient assessment? Ann Clin Biochem 39:148–150

    Article  PubMed  Google Scholar 

  19. Schmidt IL, Lahner H, Mann K et al. (2003) Diagnosis of adrenal insufficiency: evaluation of the corticotropin-releasing hormone test and basal serum cortisol in comparison to the insulin tolerance test in patients with hypothalamic-pituitary-adrenal disease. J Clin Endocrinol Metab 88:4193–4198

    Article  CAS  PubMed  Google Scholar 

  20. Arlt W, Allolio B (2003) Adrenal insufficiency. Lancet 361:1881–1893

    Article  CAS  PubMed  Google Scholar 

  21. Deutschbein T, Unger N, Mann K et al. (2009) Diagnosis of secondary adrenal insufficiency: unstimulated early morning cortisol in saliva and serum in comparison with the insulin tolerance test. Horm Metab Res 41:834–839

    Article  CAS  PubMed  Google Scholar 

  22. Kazlauskaite R, Evans AT, Villabona CV et al. (2008) Corticotropin tests for hypothalamic-pituitary-adrenal insufficiency: a metanalysis. J Clin Endocrinol Metab 3:4245–4253

    Article  Google Scholar 

  23. Tsai SL, Seiler KJ, Jacobson J (2013) Morning cortisol levels affected by sex and pubertal status in children and young adults. J Clin Res Pediatr Endocrinol 5(7 Suppl):85–89

    PubMed  PubMed Central  Google Scholar 

  24. Nieman LK (2003) Dynamic evaluation of adrenal hypofunction. J Endocrinol Invest 26(7 Suppl):74–82

    CAS  PubMed  Google Scholar 

  25. Jones SL, Trainer PJ, Perry L et al. (1994) An audit of the insulin tolerance test in adult subjects in an acute investigation unit over one year. Clin Endocrinol (Oxf) 41:123–128

    Article  CAS  Google Scholar 

  26. Orme SM, Peacey SR, Barth JH et al. (1996) Comparison of tests of stress-related cortisol secretion in pituitary disease. Clin Endocrinol (Oxf) 45:135–140

    Article  CAS  Google Scholar 

  27. Tordjman K, Jaffe A, Trostanetsky Y et al. (2000) Low-dose (1 microgram) adrenocorticotrophin (ACTH) stimulation as a screening test for impaired hypothalamo-pituitary-adrenal axis function: sensitivity, specificity, and accuracy in comparison with high-dose (250 microgram) test. Clin Endocrinol 52:633–640

    Article  CAS  Google Scholar 

  28. Suliman AM, Smith TP, Labib M et al. (2002) The low-dose ACTH test does not provide a useful assessment of the hypothalamic-pituitary-adrenal axis in secondary adrenal insufficiency. Clin Endocrinol (Oxf) 56:533–539

    Article  CAS  Google Scholar 

  29. Dhillo WS, Kong WM, Le Roux CW et al. (2002) Cortisol-binding globulin is important in the interpretation of dynamic tests of the hypothalamic-pituitary-adrenal axis. Eur J Endocrinol 146:231–235

    Article  CAS  PubMed  Google Scholar 

  30. Reynolds RM, Stewart PM, Seckl JR et al. (2006) Assessing the HPA axis in patients with pituitary disease: a UK survey. Clin Endocrinol (Oxf) 64:82–85

    Article  Google Scholar 

  31. Karagiannis AK, Nakouti T, Pipili C et al. (2015) Adrenal insufficiency in patients with decompensated cirrhosis. World J Hepatol 7:1112–1124

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vogeser M, Mohnle P, Briegel J (2007) Free serum cortisol: quantification applying equilibrium dialysis or ultrafiltration and an automated immunoassay system. Clin Chem Lab Med 45:521–525

    CAS  PubMed  Google Scholar 

  33. Arafah BM (2006) Hypothalamic pituitary adrenal function during critical illness: limitation of current assessment methods. J Clin Endocrinol Metab 91:3725–3745

    Article  CAS  PubMed  Google Scholar 

  34. Brossaud J, Gatta B, Tabarin A et al. (2015) Different methods to estimate serum free cortisol: a comparison during cortisol tetracosactide testing. Clin Chem Lab Med 53:1367–1373

    Article  CAS  PubMed  Google Scholar 

  35. Turpeinen U, Hämäläinen E (2013) Determination of cortisol in serum saliva and urine. Best Pract Res Clin Endocrinol Metab 27:795–801

    Article  CAS  PubMed  Google Scholar 

  36. Tan T, Chang L, Woodward A et al. (2010) Characterizing adrenal function using directly measured plasma free cortisol in stable severe liver disease. J Hepatol 53:841–848

    Article  CAS  PubMed  Google Scholar 

  37. Beishuizen A, Thijs LG, Vermes I (2001) Patterns of corticosteroid-binding globulin and the free cortisol index during septic shock and multitrauma. Intensive Care Med 27:1584–1591

    Article  CAS  PubMed  Google Scholar 

  38. Le Roux CW, Chapman GA, Kong WM et al. (2003) Free cortisol index is better than serum total cortisol in determining hypothalamic-pituitary-adrenal status in patients undergoing surgery. J Clin Endocrinol Metab 88:2045–2048

    Article  PubMed  Google Scholar 

  39. Bonte HA, van den Hoven RJ, van der Sluijs Veer G et al. (1999) The use of free cortisol index for laboratory assessment of pituitary-adrenal function. Clin Chem Lab Med 37:127–132

    Article  CAS  PubMed  Google Scholar 

  40. Le Roux CW, Sivakumaran S, Alaghband-Zadeh J et al. (2002) Free cortisol index as a surrogate marker for serum free cortisol. Ann Clin Biochem 39:406–408

    Article  PubMed  Google Scholar 

  41. Vincent RP, Etogo-Asse FE, Dew T et al. (2009) Serum total cortisol and free cortisol index give different information regarding the hypothalamus-pituitary-adrenal axis reserve in patients with liver impairment. Ann Clin Biochem 46:505–507

    Article  CAS  PubMed  Google Scholar 

  42. Degand T, Monnet E, Durand F et al. (2015) Assessment of adrenal function in patients with acute hepatitis using serum free and total cortisol. Dig Liver Dis 47:783–789

    Article  CAS  PubMed  Google Scholar 

  43. Coolens JL, Van Baelen H, Heyns W (1987) Clinical use of unbound plasma cortisol as calculated from total cortisol and corticosteroid-binding globulin. J Steroid Biochem 26:197–202

    Article  CAS  PubMed  Google Scholar 

  44. Dorin RI, Pai HK, Ho JT et al. (2009) Validation of a simple method of estimating plasma free cortisol: role of cortisol binding to albumin. Clin Biochem 42:64–71

    Article  CAS  PubMed  Google Scholar 

  45. Ho JT, Al-Musalhi H, Chapman MJ et al. (2006) Septic shock and sepsis: a comparison of total and free plasma cortisol levels. J Clin Endocrinol Metab 91:105–114

    Article  CAS  PubMed  Google Scholar 

  46. Restituto P, Galofrè JC, Gil MJ et al. (2008) Advantage of salivary cortisol measurements in the diagnosis of glucocorticoid related disorders. Clin Biochem 41:688–692

    Article  CAS  PubMed  Google Scholar 

  47. Raff H (2009) Utility of salivary cortisol measurements in Cushing’s syndrome and adrenal insufficiency. J Clin Endocrinol Metab 94:3647–3655

    Article  CAS  PubMed  Google Scholar 

  48. Deutschbein T, Broecker-Preuss M, Flitsch J et al. (2012) Salivary cortisol as a diagnostic tool for Cushing’s syndrome and adrenal insufficiency: improved screening by an automatic immunoassay. Eur J Endocrinol 166:613–618

    Article  CAS  PubMed  Google Scholar 

  49. Ceccato F, Barbot M, Zilio M et al. (2013) Performance of salivary cortisol in the diagnosis of Cushing’s syndrome, adrenal incidentaloma, and adrenal insufficiency. Eur J Endocrinol 169:31–36

    Article  CAS  PubMed  Google Scholar 

  50. D’Aurizio F, Tozzoli R, Dorizzi RM et al. (2015) La diagnostica di laboratorio delle malattie del surrene. Raccomandazioni pratiche per la sindrome di Cushing. Riv Ital Med Lab 11:132–149

    Article  Google Scholar 

  51. Ju Bae Y, Gaudl A, Jaeger S et al. (2016) Immunoassay or LC-MS/MS for the measurement of salivary cortisol in children? Clin Chem Lab Med 54:811–822

    PubMed  Google Scholar 

  52. Deutschbein T, Broecker-Preuss M, Hartmann MF et al. (2011) Measurement of urinary free cortisol by current immunoassays: need for sex-dependent reference ranges to define hypercortisolism. Horm Metab Res 43:714–719

    Article  CAS  PubMed  Google Scholar 

  53. Pecori Giraldi F, Saccani A, Cavagnini F (2011) Assessment of ACTH assay variability: a multicenter study. Eur J Endocrinol 164:505–512

    Article  PubMed  Google Scholar 

  54. Lindsay JR, Shanmugan VK, Oldfield EH et al. (2006) A comparison of immunometric and radioimmunoassay measurement of ACTH for the differential diagnosis of Cushing’s syndrome. J Endocrinol Invest 29:983–988

    Article  CAS  PubMed  Google Scholar 

  55. Livesey JH, Dolamore B (2010) Stability of plasma adrenocorticotrophic hormone (ACTH): influence of hemolysis, rapid chilling, time, and the addition of maleimide. Clin Biochem 43:1478–1480

    Article  CAS  PubMed  Google Scholar 

  56. Betterle C, Dal Prà C, Mantero F et al. (2002) Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr Rev 23:327–364

    Article  CAS  PubMed  Google Scholar 

  57. Diederich S, Mai K, Bähr V et al. (2007) The simultaneous measurement of plasma-aldosterone and renin-concentration allows rapid classification of all disorders of the renin-aldosterone system. Exp Clin Endocrinol Diabetes 115:433–438

    Article  CAS  PubMed  Google Scholar 

  58. Abraham SB, Abel BS, Sinaii N et al. (2015) Primary vs secondary adrenal insufficiency: ACTH-stimulated aldosterone diagnostic cut-off values by tandem mass spectrometry. Clin Endocrinol (Oxf) 83:308–314

    Article  CAS  Google Scholar 

  59. Rehan M, Raizman JE, Cavalier E et al. (2015) Laboratory challenges in primary aldosteronism screening and diagnosis. Clin Biochem 48:377–387

    Article  CAS  PubMed  Google Scholar 

  60. Stowasser M, Ahmed AH, Pimenta E et al. (2012) Factors affecting the aldosterone/renin ratio. Horm Metab Res 44:170–176

    Article  CAS  PubMed  Google Scholar 

  61. Hannemann A, Friedrich N, Lüdemann J et al. (2010) Reference intervals for aldosterone, renin, and the aldosterone-to-renin ratio in the population-based study of health in pomerania (SHIP-1). Horm Metab Res 42:392–399

    Article  CAS  PubMed  Google Scholar 

  62. Kerstens MN, Kobold AC, Volmer M et al. (2011) Reference values for aldosterone-renin ratios in normotensive individuals and effect of changes in dietary sodium consumption. Clin Chem 57:1607–1611

    Article  CAS  PubMed  Google Scholar 

  63. Hannemann A, Bidlingmaier M, Friedrich N et al. (2012) Screening for primary aldosteronism in hypertensive subjects: results from two German epidemiological studies. Eur J Endocrinol 167:7–15

    Article  CAS  PubMed  Google Scholar 

  64. Funder JW, Carey RM, Mantero F et al. (2016) The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 101:1889–1916

    Article  CAS  PubMed  Google Scholar 

  65. Al-Aridi R, Abdelmannan, Arafah BM (2011) Biochemical diagnosis of adrenal insufficiency: the added value of dehydroepiandrosterone sulfate measurements. Endocr Pract 17:261–270

    Article  PubMed  Google Scholar 

  66. Nasrallah MP, Arafah BM (2003) The value of dehydroepiandrosterone sulfate measurements in the assessment of adrenal function. J Clin Endocrinol Metab 88:5293–5298

    Article  CAS  PubMed  Google Scholar 

  67. Shrivastav TG, Chaube SK, Kariya KP et al. (2011) Influence of different homologous and heterologous combinations of antibodies and enzyme conjugates of dehydroepiandrostosterone on the sensitivity and specificity of DHEA ELISA. J Immunoassay Immunochem 32:114–127

    Article  CAS  PubMed  Google Scholar 

  68. DHEA ELISA. Instructions for use. http://www.drg-diagnostics.de/files/eia-3415_ifu–dhea_2014-12-02_endeitesfr.pdf (Accesso 20 luglio 2016)

  69. Abdu TA, Elhadd TA, Neary R et al. (1999) Comparison of the low dose short Synacthen test (1 microg), the conventional dose short Synacthen test (250 microg), and the insulin tolerance test for assessment of the hypothalamo-pituitary-adrenal axis in patients with pituitary disease. J Clin Endocrinol Metab 84:838–843

    CAS  PubMed  Google Scholar 

  70. Schmidt IL, Lahner H, Mann K et al. (2003) Diagnosis of adrenal insufficiency: evaluation of the corticotropin-releasing hormone test and basal serum cortisol in comparison to the insulin tolerance test in patients with hypothalamic-pituitary-adrenal disease. J Clin Endocrinol Metab 88:4193–4198

    Article  CAS  PubMed  Google Scholar 

  71. Deutschbein T, Unger N, Mann K et al. (2009) Diagnosis of secondary adrenal insufficiency in patients with hypothalamic-pituitary disease: comparison between serum and salivary cortisol during the high-dose short synacthen test. Eur J Endocrinol 160:9–16

    Article  CAS  PubMed  Google Scholar 

  72. Cho HY, Kim JH, Kim SW et al. (2014) Different cut-off values of the insulin tolerance test, the high-dose short synacthen test (250 μg) and the low-dose short synacthen test (1 μg) in assessing central adrenal insufficiency. Clin Endocrinol (Oxf) 81:77–84

    Article  CAS  Google Scholar 

  73. Chatha KK, Middle JG, Kilpatrick ES (2010) National UK audit of the short Synacthen test. Ann Clin Biochem 47:158–164

    Article  CAS  PubMed  Google Scholar 

  74. Ospina NS, Al Nofal A, Bancos I et al. (2016) ACTH Stimulation tests for the diagnosis of adrenal insufficiency: systematic review and meta-analysis. J Clin Endocrinol Metab 101:427–434

    Article  CAS  PubMed  Google Scholar 

  75. El-Farhan N, Pickett A, Ducroq D et al. (2013) Method-specific serum cortisol responses to the adrenocorticotrophin test: comparison of gas chromatography-mass spectrometry and five automated immunoassays. Clin Endocrinol (Oxf) 78:673–680

    Article  CAS  Google Scholar 

  76. Charmandari E, Kino T, Chrousos GP (2013) Primary generalized familial and sporadic glucocorticoid resistance (Chrousos syndrome) and hypersensitivity. Endocr Dev 24:67–85

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gagliardi L, Ho JT, Torpy DJ (2010) Corticosteroid-binding globulin: the clinical significance of altered levels and heritable mutations. Mol Cell Endocrinol 316:24–34

    Article  CAS  PubMed  Google Scholar 

  78. Kosák M, Hána V, Hill V et al. (2014) Serum cortisol seems to be a more appropriate marker for adrenocortical reserve evaluation in ACTH test in comparison to salivary cortisol. Physiol Res 63:229–236

    PubMed  Google Scholar 

  79. Elbuken G, Tanriverdi F, Karaca Z et al. (2015) Comparison of salivary and calculated free cortisol levels during low and standard dose of ACTH stimulation tests in healthy volunteers. Endocrine 48:439–443

    Article  CAS  PubMed  Google Scholar 

  80. Atkins D, Best D, Briss PA et al. (2004) Grading quality of evidence and strength of recommendations. BMJ 328:1490

    Article  PubMed  Google Scholar 

  81. Swiglo BA, Murad MH, Schünemann HJ et al. (2008) A case for clarity, consistency, and helpfulness: state-of-the-art clinical practice guidelines in endocrinology using the grading of recommendations, assessment, development, and evaluation system. J Clin Endocrinol Metab 93:666–673

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica D’Aurizio.

Ethics declarations

Conflitti di interesse

Nessuno.

Studi condotti su esseri umani e animali

Non pertinente; è una rassegna.

Consenso informato

Non pertinente; è una rassegna.

Additional information

Per il Gruppo di Studio Endocrinologia e Malattie del Metabolismo (GdS-EMM) della SIPMeL.

Altri componenti del GdS-EMM della SIPMeL: B. Caruso, E. Ciotoli, C. Cocco, A. Ferrari, D. Foti, G. Giannone, L. Giovanella, M. Herrmann, G. Ozzola, L. Pecoraro, E. Stenner, E. Toffalori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Aurizio, F., Tozzoli, R., Dorizzi, R.M. et al. La diagnostica di laboratorio delle malattie del surrene. Raccomandazioni pratiche per l’insufficienza surrenalica primaria. Riv Ital Med Lab 12, 234–242 (2016). https://doi.org/10.1007/s13631-016-0135-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13631-016-0135-5

Parole chiave

Keywords

Navigation