Skip to main content
Log in

Identification of market adulterants in East Indian sandalwood using DNA barcoding

  • Original Paper
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

Context

East Indian sandalwood (Santalum album L.) in commercial markets is highly prone to adulteration. A number of cases were registered with regard to the adulteration of East Indian sandalwood, but the lack of technical tools for the precise species identification of the source wood stalled most of the court cases.

Aims

The standard DNA barcode regions, the rbcL, matK and trnH-psbA chloroplast genomic sequences recommended by the Consortium of Barcode of Life (COBOL) were analysed to distinguish wood adulterants of East Indian sandalwood.

Methods

Standard polymerase chain reactions with COBOL recommended primers were performed for all three barcode loci. The PCR products after gel elution were sequenced and alignments were performed using CLUSTALX.

Results

Single nucleotide polymorphisms (SNPs) identified with rbcL and trnH-psbA sequences of Erythroxylum monogynum Roxb. as well as with matK sequences of Osyris wightiana Wall ex. Wight could be efficiently utilized for the detection/monitoring of East Indian sandalwood adulterants. Among the two common adulterants O. wightiana and E. monogynum, the former was more similar to S. album and grouped together in the dendrogram.

Conclusion

The study recommends the exploitation of DNA barcoding technique using standard barcodes to trace sandalwood timber adulterants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ananthapadmanabha HS (2012) Expert sandalwood marketing report, TFS sandalwood project report, pp 69–71

  • Anupama C, Balasundaran M, Sujanapal P (2012) Phylogenetic relationships of Santalum album and its adulterants as inferred from nuclear DNA sequences. Int J Agric For 2:150–156

    Google Scholar 

  • Asif MJ, Cannon CH (2005) DNA extraction from processed wood: a case study for the identification of an endangered timber species (Gonystylus bancanus). Plant Mol Biol Report 23:185–192

    Article  CAS  Google Scholar 

  • Bhat KV, Balasundaran M, Balagopalan M (2006) Identification of Santalum album and Osyris lanceolata through morphological and biochemical characteristics and molecular markers to check adulteration. KFRI Res Rep 307:22p

    Google Scholar 

  • Boner M, Sommer T, Erven C, Forstel H (2007) Stable isotopes as a tool to trace back the origin of wood. In: Proceedings of the international workshop, Fingerprinting methods for the identification of timber origins, October 8-9, Bonn/Germany, pp 47–57

  • Chase MW, Salamin N, Wilkinson M (2005) Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc Lond B Biol Sci 360:1889–1895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • COBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Nat Acad Sci 106:12794–12797

    Article  Google Scholar 

  • Costion C, Ford A, Cross H (2011) Plant DNA barcodes can accurately estimate species richness in poorly known floras. PLoS ONE 6: E26841. www.plosone.org

  • Degen B, Fladung, M (2008) Use of DNA-markers for tracing illegal logging. In: Degen B (ed) Proceedings of the international workshop “Fingerprinting methods for the identification of timber origins” October 8–9, Landbauforschung, VTI Agriculture and Forestry Research, Sonderheft 321, Germany, pp 6–14

  • Deguilloux MF, Premonge MH, Petit RJ (2002) Novel perspectives in wood certification and forensics: dry wood as a source of DNA. Proc R Soc Lond 269:1039–1046, Delhi

    Article  CAS  Google Scholar 

  • Fuji T (2007) Outline of the research project »Methods to identify wood species and origin of timber of Southeast Asia. Proceedings of the international symposium on development of improved methods to identify Shorea species wood and its origin, 19

  • Hall TA (1999) A user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Biol Sci Series B 270:313–321

    Article  CAS  Google Scholar 

  • Hewson HJ, George AS (1984) Santalaceae. In: George AS (ed) Flora of Australia. Australian Government Publishing Service, Canberra, pp 29–67

    Google Scholar 

  • Holmquist R (1983) Transitions and transversions in evolutionary descent: an approach to understanding. J Mol Evol 19:134–144

    Article  CAS  PubMed  Google Scholar 

  • IUCN (2009) IUCN Red List of Threatened Species. Version 2009.1, www.iucnredlist.org

  • Kimura M (1980) A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP (2007) Clustal W and ClustaL X version 2. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Liepelt S, Sperisen C, Deguilloux MF (2006) Authenticated DNA from ancient wood remains. Ann Bot 98:1107–1111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lowe AJ, Cross HB (2011) The application of DNA to timber tracking and origin verification. J Int Assoc Wood Anatomists 32:251–262

    Google Scholar 

  • Lowe AJ, Wong KN, Tiong TS (2010) A DNA method to verify the integrity of timber supply chains, confirming the legal sourcing of Merbau timber from logging concession to sawmill. Silvae Genet 59:263–268

    Google Scholar 

  • Oyen LPA, Dung NX (1999) Plant resources of south-east Asia No. 19, Essential-oil plants, Backhuys, Leiden, the Netherlands, 1999

  • Page T, Tate H, Bunt C, Potrawiak A, Berry A (2012) Opportunities for the smallholder sandalwood industry in Vanuatu. ACIAR Technical Reports No 79 Australian Centre for International Agricultural Research, Canberra. 67 p

  • Rachmayanti Y, Leinemann L, Gailing O (2006) Extraction, amplification and characterization of wood DNA from Dipterocarpaceae. Plant Mol Biol Rep 24:45–55

    Article  CAS  Google Scholar 

  • Shivji M, Clarke C, Pank M (2002) Genetic identification of pelagic shark body parts for conservation and trade monitoring. Conserv Biol 16:1036–1047

    Article  Google Scholar 

  • Shyaula SL (2012) A review on genus Osyris: phytochemical constituents and traditional uses. J Nat Pharm 3:61–70

    Article  CAS  Google Scholar 

  • Srimathi RA, Kulkarni HD, Ventkatesan K (1995) Recent advances in research and management of sandal (Santalum album L.) in India. Associated publishing Co, New Delhi, 1995

    Google Scholar 

  • Tamura K, Dudley J, Nei M (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the Kerala Forest Department (KFD) for permission to collect the samples. We would also like to thank the anonymous reviewers for helpful suggestions and comments on the manuscript.

Funding

The study was funded by Kerala State Council for Science, Technology and Environment (KSCSTE), Govt. of Kerala, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suma Arun Dev.

Additional information

Handling Editor: Christophe PLOMION

Contribution of the co-authors

Suma Arun Dev: contributed towards designing and conducting wet lab experiments, writing paper and analysing the data

E.M. Muralidharan: involved in writing paper and coordination of project

P. Sujanapal: sample collections from the field site and identification

M. Balasundaran: wood sample collection and involved in writing paper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dev, S.A., Muralidharan, E.M., Sujanapal, P. et al. Identification of market adulterants in East Indian sandalwood using DNA barcoding. Annals of Forest Science 71, 517–522 (2014). https://doi.org/10.1007/s13595-013-0354-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13595-013-0354-0

Keywords

Navigation