Skip to main content
Log in

Bayesian Wavelet Analysis Using Nonlocal Priors with an Application to fMRI Analysis

  • Published:
Sankhya B Aims and scope Submit manuscript

Abstract

We propose a Bayesian hierarchical wavelet methodology for nonparametric regression based on nonlocal priors. Our methodology assumes for the wavelet coefficients a prior that is a mixture of a point mass at zero and a Johnson-Rossell nonlocal prior. We consider two choices of Johnson-Rossell nonlocal priors: the moment prior and the inverse moment prior. To borrow strength across wavelet coefficients, in addition to more traditional specifications from the wavelet literature, we consider a logit specification for the mixture probability and a polynomial decay specification for the scale parameter. To estimate these specifications’ hyperparameters, we propose an empirical Bayes methodology based on Laplace approximation that allows fast analytic posterior inference for the wavelet coefficients. To assess performance, we perform a simulation study to compare our methodology to several other wavelet-based methods available in the literature. In terms of mean squared error, our methodology with the inverse moment prior yields superior results for cases of low signal-to-noise ratio, as well as for moderate to large sample sizes. Finally, we illustrate the flexibility of our novel methodology with an application to a functional magnetic resonance imaging (fMRI) dataset from a study of brain activations associated with working memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovich F. and Benjamini Y. (1996). Adaptive thresholding of wavelet coefficients. Computational Statistics & Data Analysis 22, 4, 351–361.

    Article  MathSciNet  Google Scholar 

  • Abramovich F., Sapatinas T. and Silverman B. (1998). Wavelet thresholding via a Bayesian approach. Journal of the Royal Statistical Society – Series B 60, 4, 725–749.

    Article  MathSciNet  MATH  Google Scholar 

  • Altomare D., Consonni G. and La Rocca L. (2013). Objective Bayesian search of Gaussian directed acyclic graphical models for ordered variables with non-local priors. Biometrics 69, 2, 478–487.

    Article  MathSciNet  MATH  Google Scholar 

  • Antoniadis A., Bigot J. and Sapatinas T. (2001). Wavelet estimators in nonparametric regression: a comparative simulation study. Journal of Statistical Software 6, 1–83.

    Article  Google Scholar 

  • Barber S. and Nason G.P. (2004). Real nonparametric regression using complex wavelets. Journal of the Royal Statistical Society – Series B 66, 4, 927–939.

    Article  MathSciNet  MATH  Google Scholar 

  • Boubchir L. and Boashash B. (2013). Wavelet denoising based on the MAP estimation using the BKF prior with application to images and EEG signals. IEEE Transactions on Signal Processing 61, 8, 1880–1894.

    Article  MathSciNet  Google Scholar 

  • Chang S., Yu B. and Vetterli M. (2000). Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing 9, 9, 1532–1546.

    Article  MathSciNet  MATH  Google Scholar 

  • Chipman H.A., Kolaczyk E.D. and McCulloch R.E. (1997). Adaptive Bayesian wavelet shrinkage. Journal of the American Statistical Association 92, 440, 1413–1421.

    Article  MATH  Google Scholar 

  • Clyde M. and George E.I. (2000). Flexible empirical Bayes estimation for wavelets. Journal of the Royal Statistical Society – Series B 62, 4, 681–698.

    Article  MathSciNet  MATH  Google Scholar 

  • Clyde M., Parmigiani G. and Vidakovic B. (1998). Multiple shrinkage and subset selection in wavelets. Biometrika 85, 2, 391–401.

    Article  MathSciNet  MATH  Google Scholar 

  • Collazo R.A. and Smith J.Q. (2015). A new family of non-local priors for chain event graph model selection. Bayesian Anal. Advance Publication.

  • Consonni G., Forster J.J. and Rocca L.L. (2013). The Whetstone and the Alum Block: balanced objective Bayesian comparison of nested models for discrete data. Statistical Science 28, 3, 398–423.

    Article  MathSciNet  MATH  Google Scholar 

  • Crouse M., Nowak R. and Baraniuk R. (1998). Wavelet-based statistical signal processing using hidden Markov models. IEEE Transactions on Signal Processing 46, 4, 886–902.

    Article  MathSciNet  Google Scholar 

  • Cutillo L., Jung Y.Y., Ruggeri F. and Vidakovic B. (2008). Larger posterior mode wavelet thresholding and applications. Journal of Statistical Planning and Inference 138, 12, 3758–3773.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho D. and Johnstone J. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 3, 425–455.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho D.L. and Johnstone I.M. (1995). Adapting to unknown smoothness via wavelet sShrinkage. Journal of the American Statistical Association 90, 432, 1200–1224.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho D.L., Johnstone I.M., Kerkyacharian G. and Picard D. (1995). Wavelet shrinkage: asymptopia Journal of the Royal Statistical Society – Series B 57, 2, 301–369.

    MathSciNet  MATH  Google Scholar 

  • Ferreira M.A.R., Bertolde A.I. and Holan S. (2010). Analysis of economic data with multi-scale spatio-temporal models. In Handbook of Applied Bayesian Analysis, eds. A. O’Hagan and M. West. Oxford: Oxford University Press.

  • Ferreira M.A.R., Bi Z., West M., Lee H. and Higdon D. (2003). Multi-scale modelling of 1-D permeability fields. Oxford University Press. Bayesian Statistics 7, Ferreira M. A. R., Bi Z., West M., Lee H. and Higdon D (eds.), p. 519–527.

  • Ferreira M.A.R., Holan S.H. and Bertolde A.I. (2011). Dynamic multiscale spatio-temporal models for gaussian areal data. Journal of the Royal Statistical Society - Series B 73, 663–688.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferreira M.A.R. and Lee H.K.H. (2007). Multiscale modeling: a Bayesian perspective. Springer Series in Statistics, New York.

    MATH  Google Scholar 

  • Ferreira M.A.R., West M., Lee H.K.H. and Higdon D. (2006). Multi-scale and hidden resolution time series models. Bayesian Analysis 1, 947–968.

    Article  MathSciNet  MATH  Google Scholar 

  • Figueiredo M. and Nowak R. (2001). Wavelet-based image estimation: an empirical Bayes approach using Jeffrey’s noninformative prior. IEEE Transactions on Image Processing 10, 9, 1322–1331.

    Article  MathSciNet  MATH  Google Scholar 

  • Flandin G. and Penny W.D. (2007). Bayesian fMRI data analysis with sparse spatial basis function priors. NeuroImage 34, 3, 1108–1125.

    Article  Google Scholar 

  • Fonseca T.C. and Ferreira M.A.R. (2016). Dynamic multiscale spatiotemporal models for Poisson data. Journal of the American Statistical Association. To appear.

  • Fox P.A., Hall A.D. and Schryer N.L. (1978). The PORT Mathematical Subroutine Library. ACM Trans. Math. Software 4, 104–126.

    Article  Google Scholar 

  • Gai S. and Luo L. (2013). Image denoising using normal inverse gaussian model in quaternion wavelet domain. Multimedia Tools and Applications, 1–18.

  • Hoegh A., Ferreira M.A.R. and Leman S. (2016). Spatiotemporal model fusion: multiscale modelling of civil unrest. Journal of the Royal Statistical Society: Series C (Applied Statistics) 65, 529–545.

    Article  MathSciNet  Google Scholar 

  • Johnson V. and Rossell D. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society – Series B 72, 2, 143–170.

    Article  MathSciNet  Google Scholar 

  • Johnstone I.M. and Silverman B.W. (2012). Bayesian model selection in high-dimensional settings. Journal of the American Statistical Association 107, 498, 649–660.

    Article  MathSciNet  Google Scholar 

  • Johnstone I.M. and Silverman B.W. (2005). Empirical Bayes selection of wavelet Thresholds. The Annals of Statistics 33, 4, 1700–1752.

    Article  MathSciNet  MATH  Google Scholar 

  • Nason G. (2002). Choice of wavelet smoothness, primary resolution and threshold in wavelet shrinkage. Statistics and Computing 12, 3, 219–227.

    Article  MathSciNet  Google Scholar 

  • Nason G. 2014 wavethresh: Wavelets Statistics and Transforms. R package version 4.6.6. http://CRAN.R-project.org/package=wavethresh.

  • Nason G.P. (1996). Wavelet shrinkage using cross-validation. Journal of the Royal Statistical Society – Series B 58, 2, 463–479.

    MathSciNet  MATH  Google Scholar 

  • Patel J. and Read C. (1996). Handbook of the normal distribution, 2nd Edition. Taylor & Francis. Statistics: A Series of Textbooks and Monographs.

  • Percival D.B. and Walden A.T. (2006). Wavelet methods for time series analysis. Cambridge university press.

  • Portilla J., Strela V., Wainwright M. and Simoncelli E. (2003). Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing 12, 11, 1338–1351.

    Article  MathSciNet  MATH  Google Scholar 

  • Postle B.R. (2005). Delay-period activity in the prefrontal cortex: one function is sensory gating. Journal of Cognitive Neuroscience 17, 11, 1679–1690.

    Article  Google Scholar 

  • R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

  • Remnyi N. and Vidakovic B. (2015). Wavelet shrinkage with double Weibull prior. Communications in Statistics: Simulation and Computation 44, 1, 88–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Rossell D. and Telesca D. (2015). Non-local priors for high-dimensional estimation. Journal of the American Statistical Association. to appear.

  • Salazar E. and Ferreira M.A.R. (2011). Temporal aggregation of lognormal AR processes. Journal of Time Series Analysis 32, 661–671.

    Article  MathSciNet  MATH  Google Scholar 

  • Sanyal N. and Ferreira M.A.R. (2012). Bayesian hierarchical multi-subject multiscale analysis of functional MRI data. NeuroImage 63, 3, 1519–1531.

    Article  Google Scholar 

  • Shin M., Bhattacharya A. and Johnson V.E. 2015 Scalable Bayesian variable selection using nonlocal prior densities in ultrahigh-dimensional settings. arXiv:1507.07106.

  • Starck J.-L., Murtagh F. and Fadili J. (2015). Sparse image and signal processing: wavelets and related geometric multiscale analysis, 2nd edition. Cambridge University Press.

  • Tierney L. and Kadane J.B. (1986). Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association 81, 393, 82–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Vidakovic B. (1998). Nonlinear wavelet shrinkage with Bayes rules and Bayes factors. Journal of the American Statistical Association 93, 441, 173–179.

    Article  MathSciNet  MATH  Google Scholar 

  • Vidakovic B. (1999). Statistical modeling by wavelets. Wiley Series in Probability and Statistics. Wiley.

  • Vidakovic B. and Ruggeri F. (2001). BAMS method: theory and simulations. Sankhyā: The Indian Journal of Statistics – Series B 63, 2, 234–249.

    MathSciNet  MATH  Google Scholar 

  • Wang X. and Wood A.T.A. (2006). Empirical Bayes block shrinkage of wavelet coefficients via the noncentral χ 2 distribution. Biometrika 93, 3, 705–722.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. R. Ferreira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 124 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanyal, N., Ferreira, M.A.R. Bayesian Wavelet Analysis Using Nonlocal Priors with an Application to fMRI Analysis. Sankhya B 79, 361–388 (2017). https://doi.org/10.1007/s13571-016-0129-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13571-016-0129-3

Keywords and phrases

AMS (2000) subject classification

Navigation