Skip to main content

Advertisement

Log in

Role of thrombocytopenia in radiation-induced mortality and review of therapeutic approaches targeting platelet regeneration after radiation exposure

  • Review
  • Published:
Journal of Radiation Oncology

Abstract

Background

Preclinical studies on irradiated animals show that thrombocytopenia can play a role in radiation mortality, particularly in animals receiving minimal supportive care. These findings are consistent with anecdotal evidence from the atomic bombings, where bleeding complications were noted often in patients.

Objective

To evaluate the role of thrombocytopenia and hemorrhage in radiation-induced mortality, a review was conducted of publicly available pathology reports of patients who died following radiation exposure. Of the 42 reports identified with reasonably complete information, exposures resulted from nuclear detonation, contact with improperly disposed sources, radiotherapy, or industrial accidents.

Results

Consistent with animal data, a high incidence of bleeding was noted in the autopsy reports of the victims. Also presented is a review of animal model data on the use of various forms of thrombopoietin (TPO) as a treatment for hematopoietic acute radiation syndrome (ARS). Although animal studies suggested these approaches would increase platelet levels following lethal irradiation, their clinical development was halted due to lack of significant efficacy for chemotherapy-induced thrombocytopenia and safety concerns.

Conclusion

Because there is currently no approved treatment stockpiled for radiation-induced thrombocytopenia, second-generation TPO mimetics and other novel platelet-promoting agents should be developed for this indication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pellmar TC, Rockwell S (2005) Priority list of research areas for radiological nuclear threat countermeasures. Radiat Res 163(1):115–123

    Article  CAS  PubMed  Google Scholar 

  2. Courtney B, Sherman S, Penn M (2013) Federal legal preparedness tools for facilitating medical countermeasure use during public health emergencies. J Law Med Ethics 41(Suppl 1):22–27

    Article  PubMed  Google Scholar 

  3. Summary Minutes of the Joint2 Meeting of the Medical Imaging Drugs Advisory Committee and the Oncology Drugs Advisory Committee (2013). Food and Drug Administration, Silver Spring, MD

  4. Kashiwakura I, Inanami O, Abe Y, Takahashi TA, Kuwabara M (2005) Different radiosensitive megakaryocytic progenitor cells exist in steady-state human peripheral blood. Radiat Res 164(1):10–16

    Article  CAS  PubMed  Google Scholar 

  5. Kashiwakura I, Kuwabara M, Inanami O, Murakami M, Hayase Y, Takahashi TA, Takagi Y (2000) Radiation sensitivity of megakaryocyte colony-forming cells in human placental and umbilical cord blood. Radiat Res 153(2):144–152

    Article  CAS  PubMed  Google Scholar 

  6. Monzen S, Osuda K, Miyazaki Y, Hayashi N, Takahashi K, Kashiwakura I (2009) Radiation sensitivities in the terminal stages of megakaryocytic maturation and platelet production. Radiat Res 172(3):314–320

    Article  CAS  PubMed  Google Scholar 

  7. Niswander LM, Fegan KH, Kingsley PD, McGrath KE, Palis J (2014) SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury. Blood 124(2):277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McMorran BJ, Marshall VM, de Graaf C, Drysdale KE, Shabbar M, Smyth GK, Corbin JE, Alexander WS, Foote SJ (2009) Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science 323(5915):797–800

    Article  CAS  PubMed  Google Scholar 

  9. Yeaman MR (2014) Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol 12(6):426–437

    Article  CAS  PubMed  Google Scholar 

  10. Goerge T, Ho-Tin-Noe B, Carbo C, Benarafa C, Remold-O’Donnell E, Zhao BQ, Cifuni SM, Wagner DD (2008) Inflammation induces hemorrhage in thrombocytopenia. Blood 111(10):4958–4964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghoshal K, Bhattacharyya M (2014) Overview of platelet physiology: its hemostatic and nonhemostatic role in disease pathogenesis. Sci World J 2014:781857

    Article  Google Scholar 

  12. Bartley TD, Bogenberger J, Hunt P, Li YS, Lu HS, Martin F, Chang MS, Samal B, Nichol JL, Swift S, et al. (1994) Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell 77(7):1117–1124

    Article  CAS  PubMed  Google Scholar 

  13. de Sauvage FJ, Hass PE, Spencer SD, Malloy BE, Gurney AL, Spencer SA, Darbonne WC, Henzel WJ, Wong SC, Kuang WJ, et al. (1994) Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 369(6481):533–538

    Article  PubMed  Google Scholar 

  14. Lok S, Kaushansky K, Holly RD, Kuijper JL, Lofton-Day CE, Oort PJ, Grant FJ, Heipel MD, Burkhead SK, Kramer JM, et al. (1994) Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature 369(6481):565–568

    Article  CAS  PubMed  Google Scholar 

  15. Mac Manus M, Lamborn K, Khan W, Varghese A, Graef L, Knox S (1997) Radiotherapy-associated neutropenia and thrombocytopenia: analysis of risk factors and development of a predictive model. Blood 89(7):2303–2310

    CAS  PubMed  Google Scholar 

  16. Kolb HJ (1991) Bone marrow morbidity of radiotherapy. In: Plowman PN, McElwain T, Meadows A (eds) Complications of cancer management. Butterworth-Neineman, Oxford, p 398

  17. Cronkite EP, Halpern B, Jackson DP, Le RG (1950) A study of the hemorrhagic state in dogs after a lethal dose of two million volt X-rays. J Lab Clin Med 36(5):814

    CAS  PubMed  Google Scholar 

  18. Cronkite EP (1950) The hemorrhagic syndrome of acute ionizing radiation illness produced in goats and swine by exposure to the atomic bomb at Bikini, 1946. Blood 5(1):32–45

    CAS  PubMed  Google Scholar 

  19. Tullis JL, Warren S (1947) Gross autopsy observations in the animals exposed at Bikini; a preliminary report. JAMA 134(14):1155–1158

    Article  CAS  Google Scholar 

  20. Jackson DP, Cronkite EP, Le RG, Halpern B (1952) Further studies on the nature of the hemorrhagic state in radiation injury. J Lab Clin Med 39(3):449–461

    CAS  PubMed  Google Scholar 

  21. Stickney DR, Dowding C, Authier S, Garsd A, Onizuka-Handa N, Reading C, Frincke JM (2007) 5-androstenediol improves survival in clinically unsupported rhesus monkeys with radiation-induced myelosuppression. Int Immunopharmacol 7(4):500–505

    Article  CAS  PubMed  Google Scholar 

  22. Dainiak N, Waselenko JK, Armitage JO, MacVittie TJ, Farese AM (2003) The hematologist and radiation casualties. Hematology Am Soc Hematol Educ Program: 473-496

  23. Oughterson AW, Warren S (eds) (1956) Medical effects of the atomic bomb in Japan. McGraw-Hill Publishing Company, New York, NY

    Google Scholar 

  24. Weller G, Weller A, Cronkite W (2006) First into Nagasaki. Crown Publishing Group, New York, NY

    Google Scholar 

  25. Hachiya M (1955) Hiroshima diary (trans: Wells W). University of North Carolina Press, Chapel Hill

    Google Scholar 

  26. Hiroshima and Nagasaki (1981) The physical, medical, and social effects of the atomic bombings (trans: Ishikawa E). Basic Books, New York, NY

  27. Cronkite EP, Jacobs GJ, Brecher G, Dillard G (1952) The hemorrhagic phase of the acute radiation syndrome due to exposure of the whole body to penetrating ionizing radiation. Am J Roentgenol Radium Ther Nucl Med 67(5):796–804

    CAS  PubMed  Google Scholar 

  28. Nilsen T, Kudrik I, Nikitin A. The Russian Northern Fleet Nuclear Submarine Accidents. Bellona Foundation. http://spb.org.ru/bellona/ehome/russia/nfl/nfl8.htm.

  29. Ilyin LA, Soloviev VY, Baranov AE, Guskova AK, Nadezhina NM, Gusev IA Early medical consequences of radiation incidents in the former URRS territory. 11th International Congress of IRPA. http://irpa11.irpa.net/pdfs/7c20.pdf.

  30. McFee RB, Leikin JB (2009) Death by polonium-210: lessons learned from the murder of former Soviet spy Alexander Litvinenko. Semin Diagn Pathol 26(1):61–67

    Article  PubMed  Google Scholar 

  31. Ionizing radiation: sources and effects. Appendix G: early effects in man of high doses of radiation (1988). 1988 Report to the general assembly, with annexes. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), New York

  32. Blajchman MA (2008) Platelet transfusions: an historical perspective. Hematology Am Soc Hematol Educ Program 197

  33. Nenot JC (2009) Radiation accidents over the last 60 years. J Radiol Prot 29(3):301–320

    Article  CAS  PubMed  Google Scholar 

  34. Mettler FA, Ortiz-Lopez P (2001) Accidents in radiation therapy. Medical Management of Radiation Accidents, Second edn. CRC Press, Washington, DC

    Book  Google Scholar 

  35. Messerschmidt O (1990) Medical aspects of radiation accidents. In: Scherer ESC, Trott K-R (eds) Radiation exposure and occupational risks. Springer-Verlag Berlin, Germany, pp. 75–95

    Chapter  Google Scholar 

  36. Ricks RC, Berger M, Holloway EC, Goans RE (1999) REAC/TS radiation accident registry: update of accidents in the United States. IRPA Proceedings T-21

  37. Database of Radiological Incidents and Related Events (2011) Johnston’s Archive. http://www.johnstonsarchive.net/nuclear/radevents/radaccidents.html

  38. Liebow AASW, De Coursey E (1949) Pathology of atomic bomb casualties. Am J Pathol 25(5):853–1027

  39. Yamashina K (1967) Pathology of early effects from exposure to the atomic bomb. J Hirsohima Med Assoc 20:115

    Google Scholar 

  40. Hiroshima and Nagasaki (1981) The physical, medical and social effects of the atomic bombings—part II: injury to the human body, (trans: Ishikawa E, Swain DL). Basic Books, Inc., New York

  41. Goans RE (2007) Chapter 104: medical management of radiation incidents. In: Shannon MW, Borron SW, Burns M (eds) Haddad and Winchester’s clinical management of poisoning and drug overdose, 4th edn. W. B. Saunders., Philadelphia

    Google Scholar 

  42. Hempelmann LH, Lisco H, Hoffman JG (1952) The acute radiation syndrome: a study of nine cases and a review of the problem. Ann Intern Med 36(2:1):279–510

    CAS  PubMed  Google Scholar 

  43. Azizova TV, Semenikhina NG, Druzhinina MB (2005) Multi-organ involvement and failure in selected accident cases with acute radiation syndrome observed at the Mayak nuclear facility. BJR Suppl 27:30–35

    Article  Google Scholar 

  44. Andrews GA (1962) Criticality accidents in Vinca, Yugoslavia, and Oak Ridge, Tennessee comparison of radiation injuries and results of therapy. JAMA 179:191–197

    Article  CAS  PubMed  Google Scholar 

  45. Shipman TL, Lushbaugh L, Peterson DF, Langham WH, Harris PS, Lawrence JNP (1961) Acute radiation death resulting from an accidental nuclear critical excursion. J Occup Med, Special Supplement :145–192

  46. Martinez RGCG, Ganem GG, Guttman K, Lieberman ML, Linares MM, Rodriquez HM, Vater LG (1964) Observations on the accidental exposure of a family to a source of cobalt-60. Rev Med Inst Mex Seguro Soc 3(Suppl 1):14–68

  47. Genyao Y, Changlin Y (2005) Multi-organ involvement and failure in a radiation accident: the Chinese experience of 1963. BJR Suppl 27:55–61

    Article  Google Scholar 

  48. Karas JS, Stanbury JB (1965) Fatal radiation syndrome from an accidental nuclear excursion. N Engl J Med 272:755–761

    Article  CAS  PubMed  Google Scholar 

  49. Mettler FA (2001) Fatal accidental overdose with radioactive gold in wisconsin, U.S.A. In: Gusev IA, Guskova A, Mettler FA (eds) Medical management of radiation accidents. CRC Press, Washington, DC, pp. 361–362

    Chapter  Google Scholar 

  50. Stavem P, Brogger A, Devik F, Flatby J, van der Hagen CB, Henriksen T, Hoel PS, Host H, Kett K, Petersen B (1985) Lethal acute gamma radiation accident at Kjeller, Norway. Report of a case. Acta Radiol Oncol 24(1):61–63

    Article  CAS  PubMed  Google Scholar 

  51. Reitan JB, Brinch L, Beiske K (2005) Multi-organ failure aspects of a fatal radiation accident in Norway in 1982. BJR Suppl 27:36–40

    Article  Google Scholar 

  52. Agency IAE (1988) The radiological accident in Goiania. Vienna

  53. Changlin Y, Genyao Y (2005) Multi-organ failure in a radiation accident: the Chinese experience of 1990. BJR Suppl 27:47–54

    Article  Google Scholar 

  54. The radiological accident in Soreq (1993) International atomic energy agency. Austria, Vienna

    Google Scholar 

  55. Agency IAE (1996) The radiological accident at the irradiation facility in Nesvizh. Austria, Vienna

    Google Scholar 

  56. Agency IAE (1998) The radiological accident in Tammiku. Austria, Vienna

    Google Scholar 

  57. (1998) Accidental overexposure of radiotherapy patients in San José, Costa Rica. International Atomic Energy Agency,

  58. The criticality accident in Sarov (2001). International Atomic Energy Agency,

  59. Hirama T, Tanosaki S, Kandatsu S, Kuroiwa N, Kamada T, Tsuji H, Yamada S, Katoh H, Yamamoto N, Tsujii H, Suzuki G, Akashi M (2003) Initial medical management of patients severely irradiated in the Tokai-mura criticality accident. Br J Radiol 76(904):246–253

    Article  CAS  PubMed  Google Scholar 

  60. Uozaki H, Fukayama M, Nakagawa K, Ishikawa T, Misawa S, Doi M, Maekawa K (2005) The pathology of multi-organ involvement: two autopsy cases from the Tokai-mura criticality accident. BJR Suppl 27:13–16

    Article  Google Scholar 

  61. Igaki H, Nakagawa K, Uozaki H, Akahane M, Hosoi Y, Fukayama M, Miyagawa K, Akashi M, Ohtomo K, Maekawa K (2008) Pathological changes in the gastrointestinal tract of a heavily radiation-exposed worker at the Tokai-mura criticality accident. J Radiat Res 49(1):55–62

    Article  PubMed  Google Scholar 

  62. Singh SR, Karthik K, Behera C, Millo T, Bhardwaj DN, Swain R (2013) Fatal radiation exposure due to careless disposal of cobalt-60 from a university lab. J Indian Acad Forensic Med 35(3):281–284

    Google Scholar 

  63. Drouet M, Mourcin F, Grenier N, Leroux V, Denis J, Mayol JF, Thullier P, Lataillade JJ, Herodin F (2004) Single administration of stem cell factor, FLT−3 ligand, megakaryocyte growth and development factor, and interleukin-3 in combination soon after irradiation prevents nonhuman primates from myelosuppression: long-term follow-up of hematopoiesis. Blood 103(3):878–885

    Article  CAS  PubMed  Google Scholar 

  64. Hokom MM, Lacey D, Kinstler OB, Choi E, Kaufman S, Faust J, Rowan C, Dwyer E, Nichol JL, Grasel T, Wilson J, Steinbrink R, Hecht R, Winters D, Boone T, Hunt P (1995) Pegylated megakaryocyte growth and development factor abrogates the lethal thrombocytopenia associated with carboplatin and irradiation in mice. Blood 86(12):4486–4492

    CAS  PubMed  Google Scholar 

  65. Molineux G, Hartley CA, McElroy P, McCrea C, McNiece IK (1996) Megakaryocyte growth and development factor stimulates enhanced platelet recovery in mice after bone marrow transplantation. Blood 88(4):1509–1514

    CAS  PubMed  Google Scholar 

  66. Huhn RD, Tisdale JF, Agricola B, Metzger ME, Donahue RE, Dunbar CE (1999) Retroviral marking and transplantation of rhesus hematopoietic cells by nonmyeloablative conditioning. Hum Gene Ther 10(11):1783–1790

    Article  CAS  PubMed  Google Scholar 

  67. Farese AM, Hunt P, Grab LB, MacVittie TJ (1996) Combined administration of recombinant human megakaryocyte growth and development factor and granulocyte colony-stimulating factor enhances multilineage hematopoietic reconstitution in nonhuman primates after radiation-induced marrow aplasia. J Clin Invest 97(9):2145–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shibuya K, Akahori H, Takahashi K, Tahara E, Kato T, Miyazaki H (1998) Multilineage hematopoietic recovery by a single injection of pegylated recombinant human megakaryocyte growth and development factor in myelosuppressed mice. Blood 91(1):37–45

    CAS  PubMed  Google Scholar 

  69. Molineux G, Hartley C, McElroy P, McCrea C, McNiece IK (1996) Megakaryocyte growth and development factor accelerates platelet recovery in peripheral blood progenitor cell transplant recipients. Blood 88(1):366–376

    CAS  PubMed  Google Scholar 

  70. Kabaya K, Shibuya K, Torii Y, Nitta Y, Ida M, Akahori H, Kato T, Kusaka M, Miyazaki H (1996) Improvement of thrombocytopenia following bone marrow transplantation by pegylated recombinant human megakaryocyte growth and development factor in mice. Bone Marrow Transplant 18(6):1035–1041

    CAS  PubMed  Google Scholar 

  71. Coleman D, Fairchild D, Schindler-Horvat J, Munyakazi L, Neumann TA (1998) Systemic effects of pegylated recombinant human megakaryocyte growth and development factor in combination with recombinant murine granulocyte colony-stimulating factor in a murine model of myelosuppression. Toxicol Sci 45(1):77–87

    Article  CAS  PubMed  Google Scholar 

  72. Nash RA, Takatu A, Feng Z, Slichter S, Abrams K, Espino G, Gass MJ, Georges GE, McSweeney PA, Shulman HM, Storb R (2002) Effect of c-mpl ligands after total body irradiation (TBI) with and without allogeneic hematopoietic stem cell transplantation: low-dose TBI does not prevent sensitization. Biol Blood Marrow Transplant 8(7):360–367

    Article  CAS  PubMed  Google Scholar 

  73. Farese AM, MacVittie TJ, Roskos L, Stead RB (2003) Hematopoietic recovery following autologous bone marrow transplantation in a nonhuman primate: effect of variation in treatment schedule with PEG-rHuMGDF. Stem Cells 21(1):79–89

    Article  CAS  PubMed  Google Scholar 

  74. Abushullaih BA, Pestina TI, Srivastava DK, Jackson CW, Daw NC (2001) A schedule of recombinant Mpl ligand highly effective at preventing lethal myelosuppression in mice given carboplatin and radiation. Exp Hematol 29(12):1425–1431

    Article  CAS  PubMed  Google Scholar 

  75. Pestina TI, Cleveland JL, Yang C, Zambetti GP, Jackson CW (2001) Mpl ligand prevents lethal myelosuppression by inhibiting p53-dependent apoptosis. Blood 98(7):2084–2090

    Article  CAS  PubMed  Google Scholar 

  76. Ohwada A, Rafii S, Moore MA, Crystal RG (1996) In vivo adenovirus vector-mediated transfer of the human thrombopoietin cDNA maintains platelet levels during radiation-and chemotherapy-induced bone marrow suppression. Blood 88(3):778–784

    CAS  PubMed  Google Scholar 

  77. Grossmann A, Lenox J, Deisher TA, Ren HP, Humes JM, Kaushansky K, Sprugel KH (1996) Synergistic effects of thrombopoietin and granulocyte colony-stimulating factor on neutrophil recovery in myelosuppressed mice. Blood 88(9):3363–3370

    CAS  PubMed  Google Scholar 

  78. Grossmann A, Lenox J, Ren HP, Humes JM, Forstrom JW, Kaushansky K, Sprugel KH (1996) Thrombopoietin accelerates platelet, red blood cell, and neutrophil recovery in myelosuppressed mice. Exp Hematol 24(10):1238–1246

    CAS  PubMed  Google Scholar 

  79. Herodin F, Bourin P, Mayol JF, Lataillade JJ, Drouet M (2003) Short-term injection of antiapoptotic cytokine combinations soon after lethal gamma-irradiation promotes survival. Blood 101(7):2609–2616

    Article  CAS  PubMed  Google Scholar 

  80. Grande T, Bueren JA (2004) A new approach to evaluate the total reserve of hematopoietic progenitors after acute irradiation. Radiat Res 162(4):397–404

    Article  CAS  PubMed  Google Scholar 

  81. Grande T, Bueren JA (2006) The mobilization of hematopoietic progenitors to peripheral blood is predictive of the hematopoietic syndrome after total or partial body irradiation of mice. Int J Radiat Oncol Biol Phys 64(2):612–618

    Article  PubMed  Google Scholar 

  82. Thomas GR, Thibodeaux H, Errett CJ, Mathias J, Marian M, Meng G, Vandlen RL, Eaton DL (1996) In vivo biological effects of various forms of thrombopoietin in a murine model of transient pancytopenia. Stem Cells 14(Suppl 1):246–255

    Article  PubMed  Google Scholar 

  83. Wagemaker G, Neelis KJ, Hartong SC, Wognum AW, Thomas GR, Fielder PJ, Eaton DL (1998) The efficacy of recombinant thrombopoietin in murine and nonhuman primate models for radiation-induced myelosuppression and stem cell transplantation. Stem Cells 16(6):375–386

    Article  CAS  PubMed  Google Scholar 

  84. Herodin F, Roy L, Grenier N, Delaunay C, Bauge S, Vaurijoux A, Gregoire E, Martin C, Alonso A, Mayol JF, Drouet M (2007) Antiapoptotic cytokines in combination with pegfilgrastim soon after irradiation mitigates myelosuppression in nonhuman primates exposed to high irradiation dose. Exp Hematol 35(8):1172–1181

    Article  CAS  PubMed  Google Scholar 

  85. Jones DV Jr., Ashby M, Vadhan-Raj S, Somlo G, Champlin R, Gajewski J, Hellmann S, Fyfe G (1998) Recombinant human thrombopoietin clinical development. Stem Cells 16 Suppl 2:199-206

    Article  PubMed  Google Scholar 

  86. Neelis KJ, Dubbelman YD, Wognum AW, Thomas GR, Eaton DL, Egeland T, Wagemaker G (1997) Lack of efficacy of thrombopoietin and granulocyte colony-stimulating factor after high dose total-body irradiation and autologous stem cell or bone marrow transplantation in rhesus monkeys. Exp Hematol 25(10):1094–1103

    CAS  PubMed  Google Scholar 

  87. Neelis KJ, Dubbelman YD, Qingliang L, Thomas GR, Eaton DL, Wagemaker G (1997) Simultaneous administration of TPO and G-CSF after cytoreductive treatment of rhesus monkeys prevents thrombocytopenia, accelerates platelet and red cell reconstitution, alleviates neutropenia, and promotes the recovery of immature bone marrow cells. Exp Hematol 25(10):1084–1093

    CAS  PubMed  Google Scholar 

  88. Neelis KJ, Qingliang L, Thomas GR, Cohen BL, Eaton DL, Wagemaker G (1997) Prevention of thrombocytopenia by thrombopoietin in myelosuppressed rhesus monkeys accompanied by prominent erythropoietic stimulation and iron depletion. Blood 90(1):58–63

    CAS  PubMed  Google Scholar 

  89. Hartong SC, Neelis KJ, Visser TP, Wagemaker G (2000) Lack of efficacy of thrombopoietin and granulocyte-macrophage colony-stimulating factor after total body irradiation and autologous bone marrow transplantation in Rhesus monkeys. Exp Hematol 28(7):753–759

    Article  CAS  PubMed  Google Scholar 

  90. Carter CD, Schultz TW, McDonald TP (1993) Thrombopoietin from human embryonic kidney cells stimulates an increase in megakaryocyte size of sublethally irradiated mice. Radiat Res 135(1):32–39

    Article  CAS  PubMed  Google Scholar 

  91. Carter CD, McDonald TP (1992) Thrombopoietin from human embryonic kidney cells causes increased thrombocytopoiesis in sublethally irradiated mice. Radiat Res 132(1):74–81

    Article  CAS  PubMed  Google Scholar 

  92. Kaushansky K, Broudy VC, Grossmann A, Humes J, Lin N, Ren HP, Bailey MC, Papayannopoulou T, Forstrom JW, Sprugel KH (1995) Thrombopoietin expands erythroid progenitors, increases red cell production, and enhances erythroid recovery after myelosuppressive therapy. J Clin Invest 96(3):1683–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Neelis KJ, Visser TP, Dimjati W, Thomas GR, Fielder PJ, Bloedow D, Eaton DL, Wagemaker G (1998) A single dose of thrombopoietin shortly after myelosuppressive total body irradiation prevents pancytopenia in mice by promoting short-term multilineage spleen-repopulating cells at the transient expense of bone marrow-repopulating cells. Blood 92(5):1586–1597

    CAS  PubMed  Google Scholar 

  94. Van der Meeren A, Mouthon MA, Vandamme M, Squiban C, Aigueperse J (2004) Combinations of cytokines promote survival of mice and limit acute radiation damage in concert with amelioration of vascular damage. Radiat Res 161(5):549–559

    Article  PubMed  Google Scholar 

  95. Mouthon MA, Van der Meeren A, Vandamme M, Squiban C, Gaugler MH (2002) Thrombopoietin protects mice from mortality and myelosuppression following high-dose irradiation: importance of time scheduling. Can J Physiol Pharmacol 80(7):717–721

    Article  CAS  PubMed  Google Scholar 

  96. Van der Meeren A, Mouthon MA, Gaugler MH, Vandamme M, Gourmelon P (2002) Administration of recombinant human IL11 after supralethal radiation exposure promotes survival in mice: interactive effect with thrombopoietin. Radiat Res 157(6):642–649

    Article  PubMed  Google Scholar 

  97. Mouthon MA, Gaugler MH, Vandamme M, Gourmelon P, Wagemaker G, Van der Meeren A (2002) Ticlopidine inhibits the prothrombotic effects of thrombopoietin and ameliorates survival after supralethal total body irradiation. Thromb Haemost 87(2):323–328

    CAS  PubMed  Google Scholar 

  98. Stefanich EG, Carlson-Zermeno CC, McEvoy K, Reich M, Fielder PJ (2001) Dose schedule of recombinant murine thrombopoietin prior to myelosuppressive and myeloablative therapy in mice. Cancer Chemother Pharmacol 47(1):70–77

    Article  CAS  PubMed  Google Scholar 

  99. Mouthon MA, Gaugler MH, Van der Meeren A, Vandamme M, Gourmelon P, Wagemaker G (2001) Single administration of thrombopoietin to lethally irradiated mice prevents infectious and thrombotic events leading to mortality. Exp Hematol 29(1):30–40

    Article  CAS  PubMed  Google Scholar 

  100. Mouthon MA, Van der Meeren A, Gaugler MH, Visser TP, Squiban C, Gourmelon P, Wagemaker G (1999) Thrombopoietin promotes hematopoietic recovery and survival after high-dose whole body irradiation. Int J Radiat Oncol Biol Phys 43(4):867–875

    Article  CAS  PubMed  Google Scholar 

  101. Neelis KJ, Hartong SC, Egeland T, Thomas GR, Eaton DL, Wagemaker G (1997) The efficacy of single-dose administration of thrombopoietin with coadministration of either granulocyte/macrophage or granulocyte colony-stimulating factor in myelosuppressed rhesus monkeys. Blood 90(7):2565–2573

    CAS  PubMed  Google Scholar 

  102. Hartong SC, Neelis KJ, Wagemaker G (2003) Co-administration of Flt−3 ligand counteracts the actions of thrombopoietin in myelosuppressed rhesus monkeys. Br J Haematol 121(2):359–367

    Article  CAS  PubMed  Google Scholar 

  103. Farese AM, Smith WG, Giri JG, Siegel N, McKearn JP, MacVittie TJ (2001) Promegapoietin-1a, an engineered chimeric IL-3 and Mpl-L receptor agonist, stimulates hematopoietic recovery in conventional and abbreviated schedules following radiation-induced myelosuppression in nonhuman primates. Stem Cells 19(4):329–338

    Article  CAS  PubMed  Google Scholar 

  104. DiCarlo AL, Poncz M, Cassatt DR, Shah JR, Czarniecki CW, Maidment BW (2011) Development and licensure of medical countermeasures for platelet regeneration after radiation exposure. Radiat Res 176(1):134–137

    Article  CAS  PubMed  Google Scholar 

  105. Neumann TA, Foote M (2000) Megakaryocyte growth and development factor (MGDF): an Mpl ligand and cytokine that regulates thrombopoiesis. Cytokines Cell Mol Ther 6(1):47–56

    Article  CAS  PubMed  Google Scholar 

  106. Kuter DJ, Begley CG (2002) Recombinant human thrombopoietin: basic biology and evaluation of clinical studies. Blood 100(10):3457–3469

    Article  CAS  PubMed  Google Scholar 

  107. Li J, Yang C, Xia Y, Bertino A, Glaspy J, Roberts M, Kuter DJ (2001) Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood 98(12):3241–3248

    Article  CAS  PubMed  Google Scholar 

  108. Basser RL, O’Flaherty E, Green M, Edmonds M, Nichol J, Menchaca DM, Cohen B, Begley CG (2002) Development of pancytopenia with neutralizing antibodies to thrombopoietin after multicycle chemotherapy supported by megakaryocyte growth and development factor. Blood 99(7):2599–2602

    Article  CAS  PubMed  Google Scholar 

  109. Szilvassy SJ (2006) Haematopoietic stem and progenitor cell-targeted therapies for thrombocytopenia. Expert Opin Biol Ther 6(10):983–992

    Article  CAS  PubMed  Google Scholar 

  110. Kuter DJ (2007) New thrombopoietic growth factors. Blood 109(11):4607–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bussel JB (2007) Novel thrombopoietic agents: preliminary activity, potential benefit. J Support Oncol 5(4 Suppl 2):63–84

    PubMed  Google Scholar 

  112. Sakai RNT, Kamiya H (2007) Recent advances in thrombopoietic small molecules. Curr Bioact Compd 2(4):395–408

    Article  Google Scholar 

  113. Satyamitra M, Lombardini E, Peng T, Devore D, Graves 3rd J, Mullaney C, Ney P, Srinivasan V (2013) Preliminary nonclinical toxicity, pharmacokinetics, and pharmacodynamics of ALXN4100TPO, a thrombopoietin receptor agonist, in CD2F1 mice. Int J Toxicol 32(2):100–112

    Article  CAS  PubMed  Google Scholar 

  114. Asano S (2005) Multi-organ involvement: lessons from the experience of one victim of the Tokai-mura criticality accident. BJR Suppl 27:9–12

    Article  Google Scholar 

  115. Chiba S, Saito A, Ogawa S, Takeuchi K, Kumano K, Seo S, Suzuki T, Tanaka Y, Saito T, Izutsu K, Yuji K, Masuda S, Futami S, Nishida M, Suzuki G, Gale RP, Fukayama M, Maekawa K, Hirai H (2002) Transplantation for accidental acute high-dose total body neutron- and gamma-radiation exposure. Bone Marrow Transplant 29(11):935–939

    Article  CAS  PubMed  Google Scholar 

  116. Satyamitra M, Lombardini E, Graves 3rd J, Mullaney C, Ney P, Hunter J, Johnson K, Tamburini P, Wang Y, Springhorn JP, Srinivasan V (2011) A TPO receptor agonist, ALXN4100TPO, mitigates radiation-induced lethality and stimulates hematopoiesis in CD2F1 mice. Radiat Res 175(6):746–758

    Article  CAS  PubMed  Google Scholar 

  117. Gallicchio VS (1988) Accelerated recovery of hematopoiesis following sub-lethal whole body irradiation with recombinant murine interleukin-1 (IL-1). J Leukoc Biol 43(3):211–215

    CAS  PubMed  Google Scholar 

  118. Hao J, Sun L, Huang H, Xiong G, Liu X, Qiu L, Chen G, Dong B, Li Y, Chen W, Buechler Y, Sun J, Shen C, Luo Q (2004) Effects of recombinant human interleukin 11 on thrombocytopenia and neutropenia in irradiated rhesus monkeys. Radiat Res 162(2):157–163

    Article  CAS  PubMed  Google Scholar 

  119. Zeidler C, Kanz L, Hurkuck F, Rittmann KL, Wildfang I, Kadoya T, Mikayama T, Souza L, Welte K (1992) In vivo effects of interleukin-6 on thrombopoiesis in healthy and irradiated primates. Blood 80(11):2740–2745

    CAS  PubMed  Google Scholar 

  120. Chen T, Burke KA, Zhan Y, Wang X, Shibata D, Zhao Y (2007) IL-12 facilitates both the recovery of endogenous hematopoiesis and the engraftment of stem cells after ionizing radiation. Exp Hematol 35(2):203–213

    Article  CAS  PubMed  Google Scholar 

  121. Gluzman-Poltorak Z, Vainstein V, Basile LA (2014) Recombinant interleukin-12, but not granulocyte-colony stimulating factor, improves survival in lethally irradiated nonhuman primates in the absence of supportive care: evidence for the development of a frontline radiation medical countermeasure. Am J Hematol 89(9):868–873

    Article  CAS  PubMed  Google Scholar 

  122. Gokhale MS, Vainstein V, Tom J, Thomas S, Lawrence CE, Gluzman-Poltorak Z, Siebers N, Basile LA (2014) Single low-dose rHuIL-12 safely triggers multilineage hematopoietic and immune-mediated effects. Exp Hematol Oncol 3(1):11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Ye JY, Chan GC, Qiao L, Lian Q, Meng FY, Luo XQ, Khachigian LM, Ma M, Deng R, Chen JL, Chong BH, Yang M (2010) Platelet-derived growth factor enhances platelet recovery in a murine model of radiation-induced thrombocytopenia and reduces apoptosis in megakaryocytes via its receptors and the PI3-k/Akt pathway. Haematologica 95(10):1745–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen BJ, Deoliveira D, Spasojevic I, Sempowski GD, Jiang C, Owzar K, Wang X, Gesty-Palmer D, Cline JM, Bourland JD, Dugan G, Meadows SK, Daher P, Muramoto G, Chute JP, Chao NJ (2010) Growth hormone mitigates against lethal irradiation and enhances hematologic and immune recovery in mice and nonhuman primates. PLoS One 5 (6):e11056

  125. Srinivasan V, Doctrow S, Singh VK, Whitnall MH (2008) Evaluation of EUK-189, a synthetic superoxide dismutase/catalase mimetic as a radiation countermeasure. Immunopharmacol Immunotoxicol 30(2):271–290

    Article  CAS  PubMed  Google Scholar 

  126. Whitnall MH, Elliott TB, Harding RA, Inal CE, Landauer MR, Wilhelmsen CL, McKinney L, Miner VL, Jackson WER, Loria RM, Ledney GD, Seed TM (2000) Androstenediol stimulates myelopoiesis and enhances resistance to infection in gamma-irradiated mice. Int J Immunopharmacol 22 (1):1-14

  127. O’Brien JJ, Spinelli SL, Tober J, Blumberg N, Francis CW, Taubman MB, Palis J, Seweryniak KE, Gertz JM, Phipps RP (2008) 15-deoxy-delta12,14-PGJ2 enhances platelet production from megakaryocytes. Blood 112(10):4051–4060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Lambert MP, Xiao L, Nguyen Y, Kowalska MA, Poncz M (2011) The role of platelet factor 4 in radiation-induced thrombocytopenia. Int J Radiat Oncol Biol Phys 80(5):1533–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D, Kurnasov OV, Fort FL, Osterman AL, Didonato JA, Feinstein E, Gudkov AV (2008) An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320(5873):226–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pineault N, Boyer L (2011) Cellular-based therapies to prevent or reduce thrombocytopenia. Transfusion 51(Suppl 4):72S–81S

    Article  CAS  PubMed  Google Scholar 

  131. DiCarlo AL, Poncz M, Cassatt DR, Shah JR, Czarniecki CW, Maidment BW (2011) Medical countermeasures for platelet regeneration after radiation exposure. Report of a workshop and guided discussion sponsored by the National Institute of Allergy and Infectious Diseases, Bethesda, MD, March 22–23, 2010. Radiat Res 176(1):e0001–e0015

    Article  PubMed  Google Scholar 

  132. Ciurea SO, Hoffman R (2007) Cytokines for the treatment of thrombocytopenia. Semin Hematol 44(3):166–182

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the program staff within the NIAID Radiation Nuclear Countermeasures Program, including Dr. David Cassatt and Dr. Francesca Macchiarini, as well as Dr. Thomas MacVittie (University of Maryland School of Medicine) for their critical review of the manuscript.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea L. DiCarlo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiCarlo, A.L., Kaminski, J.M., Hatchett, R.J. et al. Role of thrombocytopenia in radiation-induced mortality and review of therapeutic approaches targeting platelet regeneration after radiation exposure. J Radiat Oncol 5, 19–32 (2016). https://doi.org/10.1007/s13566-015-0201-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13566-015-0201-z

Keywords

Navigation