Skip to main content
Log in

The present understanding of Earth’s global anthrobiogeochemical metal cycles

  • Original Paper
  • Published:
Mineral Economics Aims and scope Submit manuscript

Abstract

Comprehensive anthrobiogeochemical metal cycles that incorporate material flow through the natural, social, and interfacing system have been constructed to illustrate the interacting geomorphic forces of human activity. As the purveyor of what is arguably the Anthropocene epoch, human society has a responsibility to manage the movement of these metals in a way that preserves their sustained availability while minimizing the potential impacts on the natural environment. Global metal cycles constructed for aluminum (Al), iron (Fe), copper (Cu), zinc (Zn), silver, nickel, lead, and chromium quantify how humans at the beginning of the twenty-first century have come to cause approximately half the metal mass mobilization on Earth. For the industrial metals of Al, Fe, Cu, and Zn, ∼1–5% of the Earth’s land surface now has metal flow dominated by people. These traditionally mined metals are accumulating as in-use stock in highly concentrated bands in the developed world, a secondary resource available for recovery through recycling. The pattern of ore depletion and translocation to in-use stock accumulation highlights an implicit metal material wealth transfer from the developing to developed world, having long-term implications for understanding which parts of the world actually hold the wealth of “natural” metal resources. Further, this research highlights the human–nature interfaces of metal mass flows that should be the target of environmental management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. www.carma.org

References

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cycles 15:955–966

    Article  Google Scholar 

  • Carey AE, Nezat CA, Lyons WB, Kao SJ, Hicks DM, Owen JS (2002) Trace metal fluxes to the ocean: the importance of high-standing oceanic islands. Geophys Res Lett 29:14–11

    Article  Google Scholar 

  • Carr ME, Friedrichs MAM, Schmeltz M, Noguchi Aita M, Antoine D, Arrigo KR, Asanuma I, Aumont O, Barber R, Behrenfeld M, Bidigare R, Buitenhuis ET, Campbell J, Ciotti A, Dierssen H, Dowell M, Dunne J, Esaias W, Gentili B, Gregg W, Groom S, Hoepffner N, Ishizaka J, Kameda T, Le Quéré C, Lohrenz S, Marra J, Mélin F, Moore K, Morel A, Reddy TE, Ryan J, Scardi M, Smyth T, Turpie K, Tilstone G, Waters K, Yamanaka Y (2006) A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res II Top Stud Oceanogr 53:741–770

    Article  Google Scholar 

  • Dentener F, Kinne S, Bond T, Boucher O, Cofala J, Generoso S, Ginoux P, Gong S, Hoelzemann JJ, Ito A, Marelli L, Penner JE, Putaud JP, Textor C, Schulz M, van der Werf GR, Wilson J (2006) Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos Chem Phys 6:4321–4344

    Article  Google Scholar 

  • Drakonakis K, Rostkowski K, Rauch J, Graedel TE, Gordon RB (2007) Metal capital sustaining a North American city: iron and copper in New Haven, CT. Resour Conserv Recycl 49:406–420

    Article  Google Scholar 

  • Eckelman M, Rauch JN, Gordon RB (2007) In-use stocks of iron in the state of Connecticut. Yale University, New Haven

    Google Scholar 

  • European Aluminium Association (2004) Aluminium recycling: the road to high quality products. European Aluminium Association, Brussels

    Google Scholar 

  • Gerst MD, Graedel TE (2008) In-use stocks of metals: status and implications. Environ Sci Technol 42:7038–7045

    Article  Google Scholar 

  • Gordon RB, Bertram M, Graedel TE (2006) Metal stocks and sustainability. Proc Natl Acad Sci U S A 103:1209–1214

    Article  Google Scholar 

  • Graedel TE, Van Beers D, Bertram M, Fuse K, Gordon RB, Gritsinin A, Kapur A, Klee RJ, Lifset RJ, Memon L, Rechberger H, Spatari S, Vexler D (2004) Multilevel cycle of anthropogenic copper. Environ Sci Technol 38:1242–1252

    Article  Google Scholar 

  • Graedel TE, van Beers D, Bertram M, Fuse K, Gordon RB, Gritsinin A, Harper EM, Kapur A, Klee RJ, Lifset R, Memon L, Spatari S (2005) The multilevel cycle of anthropogenic zinc. J Ind Ecol 9:67–90

    Article  Google Scholar 

  • Hooke RL (2000) On the history of humans as geomorphic agents. Geol 28:843–846

    Article  Google Scholar 

  • Ito A, Penner JE (2004) Global estimates of biomass burning emissions based on satellite imagery for the year 2000. J Geophys Res-Atmos 109:D14S05

    Article  Google Scholar 

  • Jain AK, Tao Z, Yang X, Gillespie C (2006) Estimates of global biomass burning emissions for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2. J Geophys Res Solid Earth 111:D06304

    Article  Google Scholar 

  • Johnson J, Jirikowic J, Bertram M, Van Beers D, Gordon RB, Henderson K, Klee RJ, Lanzano T, Lifset R, Oetjen L, Graedel TE (2005) Contemporary anthropogenic silver cycle: a multilevel analysis. Environ Sci Technol 39(12):4655–4665

    Article  Google Scholar 

  • Johnson J, Schewel L, Graedel TE (2006) The contemporary anthropogenic chromium cycle. Environ Sci Technol 40:7060–7069

    Article  Google Scholar 

  • Johnson J, Harper EM, Lifset R, Graedel TE (2007) Dining at the periodic table: metals concentrations as they relate to recycling. Environ Sci Technol 41(5):1759–1765

    Article  Google Scholar 

  • Kapur, A. (2004) The future of the red metal: scenario analysis and implications for policy. Dissertation, Yale University

  • Klee RJ, Graedel TE (2004) Elemental cycles: a status report on human or natural dominance. Annu Rev Environ Resour 29:69–107

    Article  Google Scholar 

  • Mackenzie FT, Lerman A, Andersson AJ (2004) Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences 1:11–32

    Article  Google Scholar 

  • Mao JS, Dong J, Graedel TE (2008) The multilevel cycle of anthropogenic lead II. Results and discussion. Resour Conserv Recycl 52:1050–1057

    Article  Google Scholar 

  • Milliman JD, Syvitski JPM (1992) Geomorphic tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J Geol 100:525–544

    Article  Google Scholar 

  • Müller DB, Wang T, Duval B, Graedel TE (2006) Exploring the engine of anthropogenic iron cycles. Proc Natl Acad Sci U S A 103:16111–16116

    Article  Google Scholar 

  • Nordhaus WD (2006) Geography and macroeconomics: new data and new findings. Proc Natl Acad Sci U S A 103:3510–3517

    Article  Google Scholar 

  • Nriagu JO (1979) Copper in the environment. Wiley, New York

    Google Scholar 

  • Nriagu JO (1990) Human influence on the global cycling of trace-metals. Glob Planet Chang 82:113–120

    Article  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nat 333:134–139

    Article  Google Scholar 

  • Olivier JGJ, Aardenne JAV, Dentener FJ, Pagliari V, Ganzeveld LN, Peters JAHW (2005) Recent trends in global greenhouse gas emissions: regional trends 1970–2000 and spatial distribution of key sources in 2000. J Integr Environ Sci 2:81–99

    Article  Google Scholar 

  • Pacyna JM, Scholtz MT, Li YF (1995) Global budget of trace metal sources. Environ Rev 3:145–159

    Article  Google Scholar 

  • Poulton SW, Raiswell R (2000) Solid phase associations, oceanic fluxes and the anthropogenic perturbation of transition metals in world river particulates. Mar Chem 72:17–31

    Article  Google Scholar 

  • R. W. Beck Inc (2001) U.S. Recycling Economic Information Study. National Recycling Coalition, Washington, DC

    Google Scholar 

  • Rauch JN (2009) Global mapping of Al, Cu, Fe, and Zn in-use stocks and in-ground resources. Proc Natl Acad Sci U S A 106:18920–18925

    Article  Google Scholar 

  • Rauch JN (2010) Global spatial indexing of the human impact on Al, Cu, Fe, and Zn mobilization. Environ Sci Technol 44:5728–5734

    Article  Google Scholar 

  • Rauch JN, Graedel TE (2007) Earth’s anthrobiogeochemical copper cycle. Global Biogeochem Cycles 21:GB2010

    Article  Google Scholar 

  • Rauch JN, Pacyna JM (2009) Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles. Global Biogeochem Cycles 23:GB2001

    Article  Google Scholar 

  • Rauch JN, Eckelman M, Gordon RB (2007) Copper in-use stock and copper scrap in the state of Connecticut. Yale University, New Haven

    Google Scholar 

  • Raw Materials Group (2006) Raw materials data. Raw Materials Group, Solna

    Google Scholar 

  • Reck B, Müller DB, Rostkowski K, Graedel TE (2008) The anthropogenic nickel cycle: insights into use, trade, and recycling. Environ Sci Technol 42:3394–3400

    Article  Google Scholar 

  • Richardson GM, Garrett R, Mitchell I, Mah-Paulson M, Hackbarth T (2001) Critical review on natural global and regional emissions of six trace metals to the atmosphere. Risklogic Scientific Services, Ottawa

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL et al (eds) Treatise on geochemistry. Elsevier, Oxford, pp 1–64

    Chapter  Google Scholar 

  • Sörme L, Bergbäck B, Lohm U (2001) Century perspective of heavy metal use in urban areas. A case study in Stockholm. Water Air Soil Pollut Focus 1:197–211

    Google Scholar 

  • Spatari S, Bertram M, Gordon RB, Henderson K, Graedel TE (2005) Twentieth century copper stocks and flows in North America: a dynamic analysis. Ecolog Econ 54:37–51

    Article  Google Scholar 

  • Sullivan DE (2003) Productive capacity indicator 5.2: indicators of stocks-in-use in the United States for aluminium, copper, gold, iron and steel, lead, and zinc. Geological Survey, Reston

    Google Scholar 

  • Sutton PC, Costanza R (2002) Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation. Ecol Econ 41:509–527

    Article  Google Scholar 

  • Syvitski JPM, Peckham SD, Hilberman R, Mulder T (2003) Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sediment Geol 162:5–24

    Article  Google Scholar 

  • van Beers D, Graedel TE (2003) The magnitude and spatial distribution of in-use copper stocks in Cape Town, South Africa. S Afr J Sci 99:61–69

    Google Scholar 

  • van Beers D, Graedel TE (2004) The magnitude and spatial distribution of in-use zinc stocks in Cape Town, South Africa. Afr J Environ Assess Manag 9:18–36

    Google Scholar 

  • van Beers D, Graedel TE (2007) Spatial characterisation of multi-level in-use copper and zinc stocks in Australia. J Clean Prod 15:849–861

    Article  Google Scholar 

  • van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF Jr (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6:3423–3441

    Article  Google Scholar 

  • Wang T, Müller DB, Graedel TE (2007) Forging the anthropogenic iron cycle. Environ Sci Technol 41:5120–5129

    Article  Google Scholar 

  • Westberry T, Behrenfeld MJ, Siegel DA, Boss E (2008) Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochem Cycles 22:GB2024

    Article  Google Scholar 

  • Wittmer D, Lichtensteiger T, Baccini P (2003) Copper exploration for urban mining. In: Copper 2003. Canadian Institute of Mining, Metallurgy, and Petroleum, Montreal, pp 85–101

    Google Scholar 

  • Yevich R, Logan JA (2003) An assessment of biofuel use and burning of agricultural waste in the developing world. Global Biogeochem Cycles 17:1095

    Article  Google Scholar 

  • Zhao M, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95:164–176

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason N. Rauch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauch, J.N. The present understanding of Earth’s global anthrobiogeochemical metal cycles. Miner Econ 25, 7–15 (2012). https://doi.org/10.1007/s13563-011-0011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13563-011-0011-8

Keywords

JEL codes

Navigation