Skip to main content
Log in

Binding preferential of chickpea cold shock protein during nucleic acid interactions

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cold shock proteins (CSPs) have a widespread occurrence from prokaryotes to eukaryotes including plants. These proteins are known to possess nucleic acid binding properties. CSPs have a single cold shock domain in prokaryotes while N-terminal and C-terminal flanking regions are present in eukaryotic CSPs. The objective of this study was to investigate nucleic acid binding preferential for the chickpea CSP. Full cDNA of chickpea CSP was cloned and sequenced. The sequence was submitted to GenBank (accession no. KM036036) at NCBI. Multiple sequence alignment and phylogenetic analysis further revealed that the inferred amino acid sequence belongs to CSP family. Molecular docking was performed between the CSP and variety of nucleic acids entities. These results suggest that CSPs of chickpea possess preferential binding affinity for single stranded nucleic acids. Docking results suggest that homo-polymer entities of RNA polyU RNA (20mer) form most stable complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adkins S, Burmeister M (1996) Visualization of DNA in agarose gels and educational demonstrations. Anal Biochem 240(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Chaikam V, Karlson D (2008) Functional characterization of two cold shock domain proteins from Oryza sativa. Plant Cell Environ 31:995–1006. doi:10.1111/j.1365-3040.2008.01811.x

    Article  CAS  PubMed  Google Scholar 

  • Clark JM (1988) Novel non-templated nucleotide addition reactions catalyzed by prokaryotic and eukaryotic DNA polymerases. Nucleic Acids Res 16(20):9677–9686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries SJ, Bonvin AMJJ (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897

    Article  CAS  PubMed  Google Scholar 

  • Evdokimova VM, Ovchinnikov LP (1999) Translational regulation by Y-box transcription factor: involvement of the major mRNA-associated protein, p50. Int J Biochem Cell Biol 31:139–149

    Article  CAS  PubMed  Google Scholar 

  • Fiser A, Sali A (2003) ModLoop: automated modeling of loops in protein structures. Bioinformatics 19:2500–2501

    Article  CAS  PubMed  Google Scholar 

  • Fiser A, Do RKG, Sali A (2000) Modeling of loops in protein structures. Prot Sci 9:1753–1773

    Article  CAS  Google Scholar 

  • Goldstein J, Pollitt NS, Inouye M (1990) Major heat shock protein of Escherichia coli. Proc Natl Acad Sci USA 87:283–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    Article  CAS  Google Scholar 

  • Izumi H, Imamura T, Nagatani G, Ise T, Murakami T, Uramoto H, Torigoe T, Ishiguchi H, Yoshida Y, Nomoto M, Okamoto T, Uchiumi T, Kuwano M, Funa K, Kohno K (2001) Y box-binding protein-1 binds preferentially to single-stranded nucleic acids and exhibits 3′ → 5′ exonuclease activity. Nucleic Acids Res 29:1200–1207. doi:10.1093/nar/29.5.1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PG, Inouye M (1994) The cold-shock response-a hot topic. Mol Microbiol 11:811–818

    Article  CAS  PubMed  Google Scholar 

  • Karlson D, Imai R (2003) Conservation of the cold shock domain protein family in plants. Plant Physiol 131:12–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlson D, Nakaminami K, Toyomasu T, Imai R (2002) J Biol Chem 277:35248–35256

    Article  CAS  PubMed  Google Scholar 

  • Kim MH, Sasaki K, Imai R (2009) Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana. J Biol Chem 284:23454–23460. doi:10.1074/jbc.M109.000752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Mani A, Gupta DK (2014) Single-stranded nucleic acid binding in Arabidopsis thaliana cold shock protein is cold shock domain dependent. J Biomol Struct Dyn 33:861–868. doi:10.1080/07391102.2014.907747

    Article  PubMed  Google Scholar 

  • Mani A, Yadava PK, Gupta DK (2012) Cold shock domain protein from Philosamia ricini prefers single stranded nucleic acid binding. J Biomol Struct Dyn 30:532–541. doi:10.1080/07391102.2012.687519

    Article  CAS  PubMed  Google Scholar 

  • Mantri NL, Ford R, Coram TE, Pang ECK (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genom 8:303. doi:10.1186/1471-2164-8-303

    Article  Google Scholar 

  • Nakaminami K, Sasaki K, Kajita S, Takeda H, Karlson D, Ohgi K, Imai R (2005) Heat stable ssDNA/RNA-binding activity of a wheat cold shock protein. FEBS Lett 579:4887–4891

    Article  CAS  PubMed  Google Scholar 

  • Nakaminami K, Karlson DT, Imai R (2006) Functional conservation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci USA 103:10122–10127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakaminami K, Hill K, Perry SE, Sentoku N, Long JA, Karlson DT (2009) Arabidopsis cold shock domain proteins: relationships to floral and silique development. J Exp Bot 60:1047–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rand KN (1996) Crystal violet can be used to visualize DNA bands during gel electrophoresis and to improve cloning efficiency. Elsevier Trends Journals Technical Tips, Online, T40022

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh Nb (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43. doi:10.2174/138920211794520178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki K, Imai R (2012) Pleiotropic roles of cold shock domain proteins in plants. Front Plant Sci 2:116. doi:10.3389/fpls.2011.00116

  • Sasaki K, Kim MH, Imai R (2013) Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 is a negative regulator of cold acclimation. New Phytol 198:95–102

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thieringer HA, Jones PG, Inouye M (1998) Cold shock and adaptation. BioEssays 20(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Wiame I et al (2000) Irreversible heat inactivation of DNaseI without RNA degradation. Biotechniques 29:252–256

    CAS  PubMed  Google Scholar 

  • Xin Z, Browse J (2001) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Article  Google Scholar 

  • Yadav BS, Singh S, Mani A (2015) Structure prediction and docking based molecular insights of human YB-1 and nucleic acid interaction. J Biomol Struct Dyn. doi:10.1080/07391102.2015.1124050

    Google Scholar 

  • Yang J, Roy A, Zhang Y (2013a) BioLiP: a semi-manually curated database for biologically relevant ligand–protein interactions. Nucleic Acids Res 41:D1096–D1103

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Roy A, Zhang Y (2013b) Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40

    Article  Google Scholar 

Download references

Acknowledgments

PB is thankful to MNNIT Allahabad for a M. Tech Fellowship. BSY is thankful to DST, New Delhi for PhD fellowship. SS is thankful to UGC New Delhi for a PhD fellowship. AM is thankful to TEQIP II for a project grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Mani.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5320 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhadauriya, P., Yadav, B.S., Singh, S. et al. Binding preferential of chickpea cold shock protein during nucleic acid interactions. J. Plant Biochem. Biotechnol. 26, 208–215 (2017). https://doi.org/10.1007/s13562-016-0383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-016-0383-5

Keywords

Navigation