Skip to main content
Log in

Characterization of wound responsive genes in Aquilaria malaccensis

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We report on the isolation and characterization of several genes responsive to wounding in the tropical endangered tree Aquilaria malaccensis. Wounding triggers the formation of a fragrant substance inside the tree stem. Deduced amino acid of the cloned sequences exhibited sequence similarities to their respective homologs: transcription factors of the WRKY gene family (AmWRKY) and β-1,3-glucanase (AmGLU). A homolog to phenylalanine ammonia-lyase (AmPAL) from previous work was also included. All cDNA sequences were of partial lengths. We studied their expression profiles in a wounding-stress experiment. Mechanical wounding induces AmWRKY in an early response to wounding (3 h), and elevates AmPAL and AmGLU expressions after 16 h. It is possible that AmWRKY mediates early wounding response while AmPAL mediates response to fungal infection by co-inducing AmGLU. Their homologs in other plants are known to inhibit fungal growth. Our data provide the first insight into the mechanisms of wounding responses in Aquilaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GOI:

Gene of interest

GOInorm :

Normalized gene of interest

PR:

Pathogenesis-related

qRT-PCR:

Quantitative reverse transcription-PCR

RT:

Reverse transcription

RT-PCR:

Reverse transcription-PCR

References

  • Bailey BA, Strem MD, Bae H, Antuniez de Mayolo G, Guiltinan MJ (2005) Gene expression in leaves of Theobroma cacao in response to mechanical wounding, ethylene, and/or methyl jasmonate. Plant Science 168:1247–1258

    Article  CAS  Google Scholar 

  • Barden A, Anak NA, Mulliken T, Song M (2000) Heart of the matter: agarwood use and trade and CITES implementation for Aquilaria malaccensis. Cambridge, Traffic International

  • Bonaventure G, Baldwin IT (2010) New insights into the early biochemical activation of jasmonic acid biosynthesis in leaves. Plant Signal Behav 5:287–289

    Article  PubMed  CAS  Google Scholar 

  • Borrone JW, Kuhn DN, Schnell RJ (2004) Isolation, characterization, and development of WRKY genes as useful genetic markers in Theobroma cacao. Theor Appl Genet 109:495–507

    Article  PubMed  CAS  Google Scholar 

  • Campos R, Nonogaki H, Suslow T, Saltveit ME (2004) Isolation and characterizationof a wound inducible phenylalanine ammonia-lyase gene (LsPAL1) from Romaine lettuce leaves. Physiol Plant 121:429–438

    Article  CAS  Google Scholar 

  • Chen L, Zhang L, Yu D (2010) Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Mol Plant-Microbe Interact 23:558–565

    Article  PubMed  CAS  Google Scholar 

  • Davies KM, Schwinn KE (2003) Transcriptional regulation of secondary metabolism. Funct Plant Biol 30:913–925

    Article  CAS  Google Scholar 

  • Donzelli BGG, Lorito M, Scala F, Harman GE (2001) Cloning, sequence and structure of a gene encoding an antifungal glucan 1,3-β-glucosidase from Trichoderma atroviride (T. harzianum). Gene 277:199–208

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Graham MY, Weidner J, Wheeler K, Pelow MJ, Graham TL (2003) Induced expression of pathogenesis-related protein genes in soybean by wounding and the Phytophthora sojae cell wall glucan elicitor. Physiol Mol Plant Pathol 63:141–149

    Article  CAS  Google Scholar 

  • Ito M, Honda G (2005) Taxonomical identification of agarwood-producing species. Nat Med 59:104–112

    CAS  Google Scholar 

  • Jin W, Horner HT, Palmer RG, Shoemaker RC (1999) Analysis and mapping of gene families encoding ß-1,3-glucanases of soybean. Genetics 153:445–452

    PubMed  CAS  Google Scholar 

  • Jones JDG, Dunsmuir P, Bedbrook J (1985) High level expression of introduced chimaeric genes in regenerated transformed plants. EMBO J 4:2411–2418

    PubMed  CAS  Google Scholar 

  • Kenmotsu Y, Yamamura Y, Ogita S, Katoh Y, Kurosaki F (2010) Transcriptional activation of putative calmodulin genes Am-cam-1 and Am-cam-2 from Aquilaria microcarpa, in response to externals stimuli. Biol Pharm Bull 33:1911–1914

    Article  PubMed  CAS  Google Scholar 

  • Kenmotsu Y, Ogita S, Katoh Y, Yamamura Y, Takao Y, Tatsuo Y, Fujino H, Kadota S, Kurosaki F (2011) Methyl jasmonate-induced enhancement of expression activity of Am-FaPS-1, a putative farnesyl diphosphate synthase gene from Aquilaria microcarpa. J Nat Med 65:194–197

    Article  PubMed  CAS  Google Scholar 

  • Kombrink E, Somssich IE (1997) Pathogenesis-related proteins and plant defense. In: Carroll G, Tudzynski P (eds) The Mycota Part A, plant relationships. Springer, Berlin, pp 107–128

    Chapter  Google Scholar 

  • Kostenyuk IA, Zoń J, Burns JK (2002) Phenylalanine ammonia lyase gene expression during abscission in citrus. Physiol Plant 116:106–112

    Article  PubMed  CAS  Google Scholar 

  • Kumeta Y, Ito M (2010) Characterization of δ-guaiene synthases from cultured cells of Aquilaria, responsible for the formation of the sesquiterpenes in agarwood. Plant Physiol 154:1998–2007

    Article  PubMed  CAS  Google Scholar 

  • Lippok B, Birkenbihl RP, Rivory G, Brümmer J, Schmelzer E, Logemann E, Somssich IE (2007) Expression of AtWRKY33 encoding a pathogen-or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W Box elements. Mol Plant-Microbe Interact 20:420–429

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Xue X, Cui S, Zhang X, Han Q, Zhu L, Liang X, Wang X, Huang L, Chen X, Kang Z (2010) Cloning and characterization of a wheat β-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. Tritici. Mol Biol Rep 37:1045–1052

    Article  PubMed  CAS  Google Scholar 

  • Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, Corio-Costet M, Regad F, Cailleteau B, Hamdi S, Lauvergeat V (2007) Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. J Exp Bot 58:1999–2010

    Article  PubMed  CAS  Google Scholar 

  • Matsui T, Bhowmik PK, Yokozeki K (2004) A cDNA sequence encoding Actin gene in moso bamboo shoot and its phylogenetic analysis. Asian J Plant Sci 3:128–131

    Article  Google Scholar 

  • Mohamed R, Jong PL, Zali MS (2010) Fungal diversity in wounded stems of Aquilaria malaccensis. Fungal Divers 43:67–74

    Article  Google Scholar 

  • Naef R (2011) The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: a review. Flavour Fragr J 26:73–87

    Article  CAS  Google Scholar 

  • Nishiuchi T, Shinshi H, Suzuki K (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves - Possible involvement of NtWRKYs and autorepression. J Biol Chem 279:55355–55361

    Article  PubMed  CAS  Google Scholar 

  • Okudera Y, Ito M (2009) Production of agarwood fragrant constituents in Aquilaria calli and cell suspension cultures. Plant Biotechnol 26:307–315

    Article  CAS  Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–720

    PubMed  CAS  Google Scholar 

  • Riviere MP, Marais A, Ponchet M, Willats W, Galiana E (2008) Silencing of acidic pathogenesis-related PR-1 genes increases extracellular β-1-3,-glucanase activity at the onset of tobacco defence reactions. J Exp Bot 59:1225–1239

    Article  PubMed  CAS  Google Scholar 

  • Skibbe M, Qu N, Galis I, Baldwin IT (2008) Induced plant defences in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell 20:1984–2000

    Article  PubMed  CAS  Google Scholar 

  • Sridevi G, Parameswari C, Sabapathi N, Raghupathy V, Veluthambi K (2008) Combined expression of chitinase and β-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Science 175:283–290

    Article  CAS  Google Scholar 

  • Subehan UJ, Fujino H, Attamimi F, Kadota S (2005) A field survey of agarwood in Indonesia. J Trad Med 22:244–251

    Google Scholar 

  • Tabata Y, Widjaya E, Mulyaningsih T, Parman I, Wiriadinata H, Mandang YI, Itoh T (2003) Structural survey and artificial induction of aloeswood. Wood Res 90:11–12

    Google Scholar 

  • Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  Google Scholar 

  • Van Beek H (2000). Agarwood. Malaysia: TRAFFIC International, 2 May 2000

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, Paepe AD, Speleman F (2002) Accurate normalization of real-time quantitive RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034

  • Walling LL (2009) Adaptive defense responses to pathogens and insects. In: Van Loon LC (ed) Advances in botanical research: plant innate immunity. Elsevier, London, p 51

    Google Scholar 

  • Wong MT, Mohamed R (2009) Cloning of Phenylalanine Ammonia-Lyase (PAL) gene fragment from Aquilaria malaccensis Lam. (Karas). Mal For 72:45–50

    Google Scholar 

  • Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Nakano T, Suzuki K, Shinshi H (2004) Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco. Biochim Biophys Acta 1679:279–287

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Dr. Tadashi Nobuchi (previously with Kyoto University, Japan, and Universiti Putra Malaysia) for his technical assistance and valuable suggestions. This work was supported by the Ministry of Higher Education of Malaysia under the Fundamental Research Grant Scheme (Project No: 01-01-07-069FR), and by the Universiti Putra Malaysia, Research University Grant Scheme (Project No. 03-01-09-0829RU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rozi Mohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, M.T., Siah, C.H., Faridah, Q.Z. et al. Characterization of wound responsive genes in Aquilaria malaccensis . J. Plant Biochem. Biotechnol. 22, 168–175 (2013). https://doi.org/10.1007/s13562-012-0144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-012-0144-z

Keywords

Navigation