Skip to main content
Log in

Les utilisations du trou anionique plasmatique corrigé pour le diagnostic de l’acidose métabolique

Use of corrected plasmatic anion gap for the diagnosis of metabolic acidosis

  • Mise au Point / Update
  • Published:
Réanimation

Résumé

La compréhension des troubles acidobasiques se fonde sur une démarche diagnostique simple et hiérarchisée se reposant sur l’équation d’Henderson-Hasselbalch. Après avoir déterminé la composante métabolique, le calcul du trou anionique plasmatique (TAP) permet de quantifier les anions indosés. Physiologiquement, il est de 12 ± 2 mEq/l. Néanmoins, dans le cadre de troubles acidobasiques complexes, son calcul peut être pris en défaut, et il est nécessaire de corriger certains paramètres. L’albumine en est le principal à prendre en compte afin de déterminer le TAP corrigé (TAPc), l’hypoalbuminémie étant alcalinisante. Le TAPc peut également être diminué par une grande hyperphosphorémie ou l’augmentation de certains cations (Ca2+, Mg2+, hypergammaglobulinémie). Toute variation de la natrémie sans variation proportionnelle de la chlorémie peut également modifier le TAPc. L’utilisation du rapport ΔTAPc/ΔHCO 3 et du rapport Cl/Na constitue une approche complémentaire au calcul du TAPc, utile dans les désordres acidobasiques mixtes.

Abstract

Understanding the acid–base disorders relies on a structured diagnostic approach, based on Henderson-Hasselbalch’s equation. After the diagnosis of metabolic acidosis, the calculation of the plasmatic anion gap (AG) evaluates the excess of unmeasured anions, the reference range being 12 ± 2 mEq/l. However, in case of complex disorders, we need to correct the calculation with some parameters that constitute the true AG. Albumin is most clinically relevant to adjust the calculation of the albumin-corrected anion gap (ACAG), because hypoalbuminemia has an alkalizing effect. ACAG can reduce because of hyperphosphotemia or the increase of some cations (e.g., Ca2+, Mg2+, and hypergammaglobulinemia). Variations of sodium have to be the same as that of chloride to induce no change in the ACAG. The ratios ΔTAPc/ΔHCO 3 and Cl/Na are accurate tools to add to the ACAG, which reveal the mechanism of complex acidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Quintard H, Hubert S, Ichai C (2007) Qu’apporte le modèle de Stewart à l’interprétation des troubles de l’équilibre acide–base? Ann Fr Anesth Reanim 26:423–33

    Article  CAS  PubMed  Google Scholar 

  2. Kraut JA, Madias NE (2007) Serum anion gap: its uses and limitations in clinical medicine. Clin J Am Soc Nephrol 2: 162–74

    Article  CAS  PubMed  Google Scholar 

  3. Kraut JA, Nagami GT (2013) The serum anion gap in the evaluation of acid–base disorders: what are its limitations and can its effectiveness be improved? Clin J Am Soc Nephrol 8:2018–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Winter SD, Pearson JR, Gabow PA, et al (1990) The fall of the serum anion gap. Arch Intern Med 150: 311–3

    Article  CAS  PubMed  Google Scholar 

  5. Buckley-Sharp MD, Miller AL (1973) The anion gap. Lancet 2: 206

    Article  PubMed  Google Scholar 

  6. Sadjadi SA, Manalo R, Jaipaul N, McMillan J (2013) Ionselective electrode and anion gap range: what should the anion gap be? Int J Nephrol Renovasc Dis 6:101–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lee S, Kang KP, Kang SK (2006) Clinical usefulness of the serum anion gap. Electrolyte Blood Press 4: 44–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Rastegar A, (2007) Use of the deltaAG/deltaHCO3 ratio in the diagnosis of mixed acid–base disorders. J Am Soc Nephrol 18: 2429–31

    Article  CAS  PubMed  Google Scholar 

  9. Kraut JA, Madias NE (2001) Approach to patients with acid–base disorders. Respir Care 46: 392–403

    CAS  PubMed  Google Scholar 

  10. Moe OW, Fuster D (2003) Clinical acid–base pathophysiology: disorders of plasma anion gap. Best Pract Res Clin Endocrinol Metab 17: 559–74

    Article  CAS  PubMed  Google Scholar 

  11. Gluck SL (1998) Acid–base. Lancet 352: 474–9

    Article  CAS  PubMed  Google Scholar 

  12. Berend K, de Vries AP, Gans RO (2014) Physiological approach to assessment of acid–base disturbances. N Engl J Med 371: 1434–45

    Article  PubMed  Google Scholar 

  13. Kowlgi NG, Chhabra L (2015) D-lactic acidosis: an underrecognized complication of short bowel syndrome. Gastroenterol Res Pract 2015:476215

    Article  PubMed Central  PubMed  Google Scholar 

  14. Demir IE, Ceyhan GO, Friess H (2012) Beyond lactate: is there a role for serum lactate measurement in diagnosing acute mesenteric ischemia? Dig Surg 29:226–35

    Article  CAS  PubMed  Google Scholar 

  15. Nielsen C, Pedersen LT, Lindholt JS, et al (2011) An automated plasma D-lactate assay with a new sample preparation method to prevent interference from L-lactate and L-lactate dehydrogensae. Scand J Clin Lab Invest 71: 507–14

    Article  CAS  PubMed  Google Scholar 

  16. Feldman M, Soni N, Dickson B (2005) Influence of hypoalbuminemia or hyperalbuminemia on the serum anion gap. J Lab Clin Med 146: 317–20

    Article  CAS  PubMed  Google Scholar 

  17. Figge J, Mydosh T, Fencl V (1992) Serum proteins and acid–base equilibria: a follow-up. J Lab Clin Med 120: 713–19

    CAS  PubMed  Google Scholar 

  18. Gabow PA (1985) Disorders associated with an altered anion gap. Kidney Int 27: 472–83

    Article  CAS  PubMed  Google Scholar 

  19. Figge J, Jabor A, Kazda A, Fencl V (1998) Anion gap and hypoalbuminemia. Crit Care Med 26: 1807–10

    Article  CAS  PubMed  Google Scholar 

  20. Durward A, Mayer A, Skellett S, et al (2003) Hypoalbuminemia in critically ill children: incidence, prognosis, and influence on the anion gap. Arch Dis Child 88: 419–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Carvounis C, Feinfeld DA (2000) A simple estimate of the effect of the serum albumin level on the anion gap. Am J Nephrol 20: 369–72

    Article  CAS  PubMed  Google Scholar 

  22. Figge J (2015) Integration of acid–base and electrolytes disorders. N Engl J Med 372: 390

    CAS  PubMed  Google Scholar 

  23. Levraut J, Bounatirou T, Ichai C, et al (1997) Reliability of anion gap as an indicator of blood lactate in critically ill patients. Intensive Care Med 23: 417–22

    Article  CAS  PubMed  Google Scholar 

  24. Chawla LS, Shih S, Davison D, et al (2008) Anion gap, anion gap corrected for albumin, base deficit and unmeasured anions in critically ill patients: implications on the assessment of metabolic acidosis and the diagnosis of hyperlactatemia. BMC Emerg Med 8: 18

    Article  PubMed Central  PubMed  Google Scholar 

  25. Moviat M, van Haren F, van der Hoeven H (2003) Conventional or physiochemical approach in intensive care unit patients with metabolic acidosis. Crit Care 7:R41–R5

  26. Hatherill M, Waggie Z, Purves L, et al (2002) Correction of the anion gap for albumin in order to detect occult tissue anions in shock. Arch Dis Child 87: 526–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Chawla LS, Jagasia D, Abell LM, et al (2008) Anion gap, anion gap corrected for albumin, and base deficit fail to accurately diagnose clinically significant hyperlactatemia in critically ill patients. J Intensive Care Med 23: 122–7

    Article  PubMed  Google Scholar 

  28. Dinh CH, Ng R, Grandinetti A, et al (2006) Correcting the anion gap for hypoalbuminemia does not improve detection of hyperlactataemia. Emerg Med J 23: 627–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mallat J, Michel D, Salaun P, et al (2012) Defining metabolic acidosis in patients with septic shock using Stewart approach. Am J Emerg Med 30: 391–8

    Article  PubMed  Google Scholar 

  30. Park M, Taniguchi LU, Noritomi DT, et al (2008) Clinical utility of standard base excess in the diagnosis and interpretation of metabolic acidosis in critically ill patients. Braz J Med Biol Res 41: 241–9

    CAS  PubMed  Google Scholar 

  31. Noritomi DT, Soriano FG, Kellum JA, et al (2009) Metabolic acidosis in patients with severe sepsis and septic shock: a longitudinal quantitative study. Crit Care Med 37: 2733–9

    Article  CAS  PubMed  Google Scholar 

  32. Fencl V, Jabor A, Kazda A, Figge J (2000) Diagnosis of metabolic acid–base disturbances in critically ill patients. Am J Resp Crit Care Med 162: 2246–51

    Article  CAS  PubMed  Google Scholar 

  33. Mehta HJ, Bhanusheli G, Nietert PJ, Pastis NJ (2012) WITHDRAWN: the association between initial anion gap and outcomes in medical intensive care unit patients. J Crit Care pii:S0883–9441

    Google Scholar 

  34. Hagiwara S, Oshima K, Furukawa K, et al (2013) The significance of albumin corrected anion gap in patients with cardiopulmonary arrest. Ann Thorac Cardiovasc Surg 19: 283–8

    Article  PubMed  Google Scholar 

  35. Togawa A, Uyama S, Takanohashi S, et al (2013) Adjusted anion gap is associated with glomerular filtration rate decline in chronic kidney disease. Nephron Extra 14: 113–7

    Article  Google Scholar 

  36. Abramowitz MK, Hostetter TH, Melamed ML (2012) The serum anion gap is altered in early kidney disease and associates with mortality. Kidney Int 82: 701–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Lolekha PH, Vanavanan S, Lolekha S (2001) Update on value of the anion gap in clinical diagnosis and laboratory evaluation. Clin Chim Acta 307: 33–6

    Article  CAS  PubMed  Google Scholar 

  38. De Troyer A, Stolarczyk A, De Beyl DZ, Stryckmans P (1977) Value of anion–gap determination in multiple myeloma. N Engl J Med 296: 858–60

    Article  PubMed  Google Scholar 

  39. van Hoeven KH, Joseph RE, Gaughan WJ, et al (2011) The anion gap and routine serum protein measurements in monoclonal gammopathies. Clin J Am Soc Nephrol 6: 2814–21

    Article  PubMed Central  PubMed  Google Scholar 

  40. Oster JR, Gutierrez R, Schlessinger FB, et al (1990) Effect of hypercalcemia on the anion gap. Nephron 55: 164–9

    Article  CAS  PubMed  Google Scholar 

  41. Madias NE, Homer SM, Johns CA, Cohen JJ (1984) Hypochloremia as a consequence of anion gap metabolic acidosis. J Lab Clin Med 104: 15–23

    CAS  PubMed  Google Scholar 

  42. Kim HY, Han JS, Jeon US, et al (2001) Clinical significance of the fractional excretion of anions in metabolic acidosis. Clin Nephrol 55: 448–52

    CAS  PubMed  Google Scholar 

  43. Mallat J, Barrailler S, Lemyze M, et al (2013) Use of sodiumchloride difference and corrected anion gap as surrogates of Stewart variables in critically ill patients. PLoS One 8:e56635

  44. Nagaoka D, Nassar Junior AP, Maciel AT, et al (2010) The use of sodium-chloride difference and chloride-sodium ratio as strong ion difference surrogates in the evaluation of metabolic acidosis in critically ill patients. J Crit Care 25: 525–31

    Article  CAS  PubMed  Google Scholar 

  45. Durward A, Skellett S, Mayer A, et al (2001) The value of chloride: sodium ratio in differentiating the aetiology of metabolic acidosis. Intensive Care Med 27: 828–35

    Article  CAS  PubMed  Google Scholar 

  46. Kurt A, Ecevit A, Ozkiraz S, et al (2012) The use of chloridesodium ratio in the evaluation of metabolic acidosis in critically ill neonates. Eur J Pediatr 171: 963–9

    Article  CAS  PubMed  Google Scholar 

  47. Blanchard A, Lorthioir A, Zhygalina V, Curis E (2014) Approche de Stewart ou comment faire du neuf avec du vieux? Réanimation 23:359–69

    Article  Google Scholar 

  48. Cusack RJ, Rhodes A, Lochhead P, et al (2002) The strong ion gap does not have prognostic value in critically ill patients in a mixed medical/surgical adult ICU. Intensive Care Med 28: 864–9

    Article  CAS  PubMed  Google Scholar 

  49. Taylor D, Durward A, Tibby SM (2006) The influence of hyperchloraemia on acid–base interpretation in diabetic ketoacidosis. Intensive Care Med 32: 295–301

    Article  CAS  PubMed  Google Scholar 

  50. Dubin A, Menises MM, Masevicius FD, et al (2007) Comparison of three different methods of evaluation of metabolic acid–base disorders. Crit Care Med 35: 1264–70

    Article  CAS  PubMed  Google Scholar 

  51. Adrogué HJ, Gennari FJ (2015) Integration of acid–base and electrolyte disorders. N Engl J Med 372: 389

    Article  PubMed  Google Scholar 

  52. Vaughan-Jones RD, Boron WF (2015) Integration of acid–base and electrolyte disorders. N Engl J Med 372: 389

    Article  CAS  PubMed  Google Scholar 

  53. Bellomo R, Kellum JA (2015) Integration of acid–base and electrolyte disorders. N Engl J Med 372: 391

    CAS  PubMed  Google Scholar 

  54. Seifter JL (2015) Integration of acid–base and electrolyte disorders. N Engl J Med 372: 391–2

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mallat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meddour, M., Lemyze, M., Thévenin, D. et al. Les utilisations du trou anionique plasmatique corrigé pour le diagnostic de l’acidose métabolique. Réanimation 24, 713–720 (2015). https://doi.org/10.1007/s13546-015-1097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-015-1097-8

Mots clés

Keywords

Navigation