Skip to main content
Log in

Quoi de neuf dans les techniques de désinfection des chambres de réanimation ?

What’s New in Room Decontamination in the Intensive Care Unit?

  • Mise au Point / Update
  • Published:
Réanimation

Résumé

L’environnement joue un rôle majeur dans la transmission croisée des micro-organismes. Le bionettoyage standard est microbiologiquement insuffisant. Son amélioration est primordiale pour le contrôle des endémies et des épidémies bactériennes. C’est pourquoi des systèmes automatisés de désinfection des surfaces par voie aérienne à base de peroxyde d’hydrogène (H2O2) sont de plus en plus utilisés en complément du bionettoyage terminal. Deux technologies existent à ce jour: l’aérosolisation et la vaporisation. Les vaporisateurs d’un gaz sec d’H2O2 sont les plus étudiés: ils présentent une efficacité microbiologique in vitro et in situ. Leur utilisation a permis à diverses reprises d’endiguer des endémies et des épidémies bactériennes. Les études sont encore trop rares pour permettre de conclure définitivement à l’efficacité des aérosolisateurs d’H2O2. Les autres technologies (ultraviolets, ozone, dioxyde de chlore, vapeur d’eau, filtres d’air haute performance, ultramicrofibres, biocides à base de cuivre) sont insuffisamment étayées par des études pour être recommandées. Tous ces systèmes engendrent un surcoût et un délai d’attente supplémentaire entre deux admissions. De plus, leur innocuité n’est pas prouvée.

Abstract

The environment plays a central role in the transmission of hospital-acquired pathogens. Current cleaning methods are microbiologically ineffective. Improvements in environmental cleaning are associated with a decrease in the rate of hospital-acquired infections. To improve terminal cleaning, automated room disinfection systems containing hydrogen peroxide (H2O2) are more and more considered. Two technologies are available: aerosolization and vaporization. Dry-H2O2 vaporization is microbiologically efficient (in vitro and in situ). Its use is associated with endemic colonization and outbreak control. H2O2 aerosolization effectiveness is still in assessment. Evidence is lacking to recommend others technologies (ultraviolet, ozone, chlorine dioxide, steam, high-efficiency particulate air-filtration, ultra microfiber, copper-based biocide). All methods are associated with extra-cost and longer waiting-time between two admissions. Safety for healthcare workers is not proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Dancer SJ (2009) The role of environmental cleaning in the control of hospital-acquired infection. J Hosp Infect 73:378–385

    Article  CAS  PubMed  Google Scholar 

  2. Dancer SJ (2008) Importance of the environment in meticillinresistant Staphylococcus aureus acquisition: the case for hospital cleaning. Lancet Infect Dis 8:101–113

    Article  PubMed  Google Scholar 

  3. Bhalla A, Pultz NJ, Gries DM, et al (2004) Acquisition of nosocomial pathogens on hands after contact with environmental surfaces near hospitalized patients. Infect Control Hosp Epidemiol 25:164–167

    Article  PubMed  Google Scholar 

  4. Dancer SJ, White LF, Lamb J, et al (2009) Measuring the effect of enhanced cleaning in a UK hospital: a prospective cross-over study. BMC Med 7:28

    Article  PubMed Central  PubMed  Google Scholar 

  5. Nseir S, Blazejewski C, Lubret R, et al (2011) Risk of acquiring multidrug-resistant Gram-negative bacilli from prior room occupants in the intensive care unit. Clin Microbiol Infect 17:1201–1208

    Article  CAS  PubMed  Google Scholar 

  6. Goodman BER, Platt R, Bass R, et al (2008) Impact of an environmental cleaning intervention on the presence of methicillinresistant Staphylococcus aureus and vancomycin-resistant enterococci on surfaces in intensive care unit rooms. Infect Control Hosp Epidemiol 29:593–599

    Article  PubMed Central  PubMed  Google Scholar 

  7. Carling PC, Parry MM, Rupp ME, et al (2008) Improving cleaning of the environment surrounding patients in 36 acute care hospitals. Infect Control Hosp Epidemiol 29:1035–1041

    Article  PubMed  Google Scholar 

  8. Rampling A, Wiseman S, Davis L, et al (2001) Evidence that hospital hygiene is important in the control of methicillinresistant Staphylococcus aureus. J Hosp Infect 49:109–116

    Article  CAS  PubMed  Google Scholar 

  9. Guerrero D, Carling P, Jury L, et al (2013) Beyond the “hawthorne effect”: reduction of Clostridium difficile environmental contamination through active intervention to improve cleaning practices. Infect Control Hosp Epidemiol 34:524–526

    Article  PubMed  Google Scholar 

  10. Otter JA, Yezli S, Perl TM, et al (2013) The role of “no-touch” automated room disinfection systems in infection prevention and control. J Hosp Infect 83:1–13

    Article  CAS  PubMed  Google Scholar 

  11. Afssaps (2011) Recommandations de l’Agence française de sécurité sanitaire des produits de santé relatives aux critères de choix des procédés de désinfection des surfaces par voie aérienne en milieu de soins. http://ansm.sante.fr/var/ansm_site/storage/original/application/f9267cb30a296eedb359f513ea33137a.pdf

    Google Scholar 

  12. ANSM (2012) Liste des procédés de désinfection des surfaces par voie aérienne retirés du marché. http://ansm.sante.fr/Activites/Biocides-Appareils-de-desinfection-par-voie-aerienne/Procedes-et-appareils-de-desinfection-des-surfaces-par-voie-aerienne/(offset)/1#paragraph_35102

    Google Scholar 

  13. Blazejewski C, Guerry MJ, Preau S, et al (2011) New methods to clean ICU rooms. Infect Disord Drug Targets 11:365–375

    Article  CAS  PubMed  Google Scholar 

  14. Shapey S, Machin K, Levi K, Boswell TC (2008) Activity of a dry mist hydrogen peroxide system against environmental Clostridium difficile contamination in elderly care wards. J Hosp Infect 70:136–141

    Article  CAS  PubMed  Google Scholar 

  15. Holmdahl T, Lanbeck P, Wullt M, Walder MH (2011) A head-to-head comparison of hydrogen peroxide vapor and aerosol room decontamination systems. Infect Control Hosp Epidemiol 32:831–836

    Article  CAS  PubMed  Google Scholar 

  16. Fu TY, Gent P, Kumar V (2012) Efficacy, efficiency and safety aspects of hydrogen peroxide vapour and aerosolized hydrogen peroxide room disinfection systems. J Hosp Infect 80:199–205

    Article  CAS  PubMed  Google Scholar 

  17. Bartels MD, Kristoffersen K, Slotsbjerg T, et al (2008) Environmental meticillin-resistant Staphylococcus aureus (MRSA) disinfection using dry-mist-generated hydrogen peroxide. J Hosp Infect 70:35–41

    Article  CAS  PubMed  Google Scholar 

  18. Orlando P, Cristina ML, Dallera M, et al (2008) Surface disinfection: evaluation of the efficacy of a nebulization system spraying hydrogen peroxide. J Prev Med Hyg 49:116–119

    CAS  PubMed  Google Scholar 

  19. Chan HT, White P, Sheorey H, et al (2011) Evaluation of the biological efficacy of hydrogen peroxide vapour decontamination in wards of an Australian hospital. J Hosp Infect 79:125–128

    Article  PubMed  Google Scholar 

  20. Andersen BM, Rasch M, Hochlin K, et al (2006) Decontamination of rooms, medical equipment and ambulances using an aerosol of hydrogen peroxide disinfectant. J Hosp Infect 62:149–155

    Article  CAS  PubMed  Google Scholar 

  21. Barbut F, Menuet D, Verachten M, Girou E (2009) Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores. Infect Control Hosp Epidemiol 30:507–514

    Article  CAS  PubMed  Google Scholar 

  22. Piskin N, Celebi G, Kulah C, et al (2011) Activity of a dry mistgenerated hydrogen peroxide disinfection system against methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii. Am J Infect Control 39:757–762

    Article  PubMed  Google Scholar 

  23. Taneja N, Biswal M, Kumar A, et al (2011) Hydrogen peroxide vapour for decontaminating air-conditioning ducts and rooms of an emergency complex in northern India: time to move on. J Hosp Infect 78:200–203

    Article  CAS  PubMed  Google Scholar 

  24. Andersen BM, Syversen G, Thoresen H, et al (2010) Failure of dry mist of hydrogen peroxide 5% to kill Mycobacterium tuberculosis. J Hosp Infect 76:80–83

    Article  CAS  PubMed  Google Scholar 

  25. Andersen BM (2011) Does “airborne” hydrogen peroxide kill Mycobacterium tuberculosis? J Hosp Infect 77:81–83

    Article  Google Scholar 

  26. Grare M, Dailloux M, Simon L, et al (2008) Efficacy of dry mist of hydrogen peroxide (DMHP) against Mycobacterium tuberculosis and use of DMHP for routine decontamination of biosafety level 3 laboratories. J Clin Microbiol 46:2955–2958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Meyer B, Cookson B (2010) Does microbial resistance or adaptation to biocides create a hazard in infection prevention and control? J Hosp Infect 76:200–205

    Article  CAS  PubMed  Google Scholar 

  29. Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59:587–590

    Article  CAS  PubMed  Google Scholar 

  30. Otter JA, Yezli S, French GL (2012) Impact of the suspending medium on susceptibility of meticillin-resistant Staphylococcus aureus to hydrogen peroxide vapour decontamination. J Hosp Infect 82:213–215

    Article  CAS  PubMed  Google Scholar 

  31. Barbut F, Yezli S, Otter JA (2012) Activity in vitro of hydrogen peroxide vapour against Clostridium difficile spores. J Hosp Infect 80:85–87

    Article  CAS  PubMed  Google Scholar 

  32. Otter JA, French GL (2009) Survival of nosocomial bacteria and spores on surfaces and inactivation by hydrogen peroxide vapor. J Clin Microbiol 47:205–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hall L, Otter JA, Chewins J, Wengenack NL (2007) Use of hydrogen peroxide vapor for deactivation of Mycobacterium tuberculosis in a biological safety cabinet and a room. J Clin Microbiol 45:810–815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Pottage T, Richardson C, Parks S, et al (2010) Evaluation of hydrogen peroxide gaseous disinfection systems to decontaminate viruses. J Hosp Infect 74:55–61

    Article  CAS  PubMed  Google Scholar 

  35. Bentley K, Dove BK, Parks SR, et al (2012) Hydrogen peroxide vapour decontamination of surfaces artificially contaminated with norovirus surrogate feline calicivirus. J Hosp Infect 80:116–121

    Article  CAS  PubMed  Google Scholar 

  36. Berrie E, Andrews L, Yezli S, Otter JA (2011) Hydrogen peroxide vapour (HPV) inactivation of adenovirus. Lett Appl Microbiol 52:555–558

    Article  CAS  PubMed  Google Scholar 

  37. Hardy KJ, Gossain S, Henderson N, et al (2007) Rapid recontamination with MRSA of the environment of an intensive care unit after decontamination with hydrogen peroxide vapour. J Hosp Infect 66:360–368

    Article  CAS  PubMed  Google Scholar 

  38. Otter JA, Yezli S, Schouten MA, et al (2010) Hydrogen peroxide vapor decontamination of an intensive care unit to remove environmental reservoirs of multidrug-resistant gram-negative rods during an outbreak. Am J Infect Control 38:754–756

    Article  PubMed  Google Scholar 

  39. Manian FA, Griesenauer S, Senkel D, et al (2011) Isolation of Acinetobacter baumannii complex and methicillin-resistant Staphylococcus aureus from hospital rooms following terminal cleaning and disinfection: can we do better? Infect Control Hosp Epidemiol 32:667–672

    Article  PubMed  Google Scholar 

  40. Barbut F, Yezli S, Mimoun M, et al (2013) Reducing the spread of Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus on a burns unit through the intervention of an infection control bundle. Burns J Int Soc Burn Inj 39:395–403

    Article  Google Scholar 

  41. Cooper T, O’Leary M, Yezli S, Otter JA (2011) Impact of environmental decontamination using hydrogen peroxide vapour on the incidence of Clostridium difficile infection in one hospital Trust. J Hosp Infect 78:238–240

    Article  CAS  PubMed  Google Scholar 

  42. Otter JA, Cummins M, Ahmad F, et al (2007) Assessing the biological efficacy and rate of recontamination following hydrogen peroxide vapour decontamination. J Hosp Infect 67:182–188

    Article  CAS  PubMed  Google Scholar 

  43. French GL, Otter JA, Shannon KP, et al (2004) Tackling contamination of the hospital environment by methicillin-resistant Staphylococcus aureus (MRSA): a comparison between conventional terminal cleaning and hydrogen peroxide vapour decontamination. J Hosp Infect 57:31–37

    Article  CAS  PubMed  Google Scholar 

  44. Passaretti CL, Otter JA, Reich NG, et al (2013) An evaluation of environmental decontamination with hydrogen peroxide vapor for reducing the risk of patient acquisition of multidrug-resistant organisms. Clin Infect Dis 56:27–35

    Article  CAS  PubMed  Google Scholar 

  45. Manian FA, Griesnauer S, Bryant A (2013) Implementation of hospital-wide enhanced terminal cleaning of targeted patient rooms and its impact on endemic Clostridium difficile infection rates. Am J Infect Control 41:537–541

    Article  PubMed  Google Scholar 

  46. Dryden M, Parnaby R, Dailly S, et al (2008) Hydrogen peroxide vapour decontamination in the control of a polyclonal meticillinresistant Staphylococcus aureus outbreak on a surgical ward. J Hosp Infect 68:190–192

    Article  CAS  PubMed  Google Scholar 

  47. Bates CJ, Pearse R (2005) Use of hydrogen peroxide vapour for environmental control during a Serratia outbreak in a neonatal intensive care unit. J Hosp Infect 61:364–366

    Article  CAS  PubMed  Google Scholar 

  48. Jeanes A, Rao G, Osman M, Merrick P (2005) Eradication of persistent environmental MRSA. J Hosp Infect 61:85–86

    Article  CAS  PubMed  Google Scholar 

  49. Boyce JM, Havill NL, Otter JA, et al (2008) Impact of hydrogen peroxide vapor room decontamination on Clostridium difficile environmental contamination and transmission in a healthcare setting. Infect Control Hosp Epidemiol 29:723–729

    Article  PubMed  Google Scholar 

  50. Landelle C, Legrand P, Lesprit P, et al (2013) Protracted outbreak of multidrug-resistant Acinetobacter baumannii after intercontinental transfer of colonized patients. Infect Control Hosp Epidemiol 34:119–124

    Article  PubMed  Google Scholar 

  51. Snitkin ES, Zelazny AM, Thomas PJ, et al (2012) Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 4:148ra116

    Article  PubMed Central  PubMed  Google Scholar 

  52. Ray A, Perez F, Beltramini AM, et al (2010) Use of vaporized hydrogen peroxide decontamination during an outbreak of multidrugresistant Acinetobacter baumannii infection at a long-term acute care hospital. Infect Control Hosp Epidemiol 31:1236–1241

    Article  PubMed Central  PubMed  Google Scholar 

  53. Chmielarczyk A, Higgins PG, Wojkowska-Mach J, et al (2012) Control of an outbreak of Acinetobacter baumannii infections using vaporized hydrogen peroxide. J Hosp Infect 81:239–245

    Article  CAS  PubMed  Google Scholar 

  54. Nerandzic MM, Cadnum JL, Pultz MJ, Donskey CJ (2010) Evaluation of an automated ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens in hospital rooms. BMC Infect Dis 10:197

    Article  PubMed Central  PubMed  Google Scholar 

  55. Boyce JM, Havill NL, Moore BA (2011) Terminal decontamination of patient rooms using an automated mobile UV light unit. Infect Control Hosp Epidemiol 32:737–742

    Article  PubMed  Google Scholar 

  56. Rutala WA, Gergen MF, Weber DJ (2010) Room decontamination with UV radiation. Infect Control Hosp Epidemiol 31:1025–1029

    Article  PubMed  Google Scholar 

  57. Pettis A (2010) Elimination of Clostridium difficile infections (CDI) by illumination? Surface disinfection by ultraviolet light treatment. Am J Infect Control 38:e16–e17

    Article  Google Scholar 

  58. Stibich M, Stachowiak J, Tanner B, et al (2011) Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on hospital operations and microbial reduction. Infect Control Hosp Epidemiol 32:286–288

    Article  PubMed  Google Scholar 

  59. Levin J, Parrish C, Riley L, English D (2011) The use of portable pulsed xenon ultraviolet light (PPX-UV) after terminal cleaning was associated with a dramatic decrease in the hospital-associated Clostridium difficile infection (HA-CDI) rate in a community hospital. Infect Dis Soc Am Idsa Annu Meet (Abstract)

    Google Scholar 

  60. Berrington AW, Pedler SJ (1998) Investigation of gaseous ozone for MRSA decontamination of hospital side-rooms. J Hosp Infect 40:61–65

    Article  CAS  PubMed  Google Scholar 

  61. Moore G, Griffith C, Peters A (2000) Bactericidal properties of ozone and its potential application as a terminal disinfectant. J Food Prot 63:1100–1106

    CAS  PubMed  Google Scholar 

  62. Sharma M, Hudson JB (2008) Ozone gas is an effective and practical antibacterial agent. Am J Infect Control 36:559–563

    Article  PubMed  Google Scholar 

  63. Beswick A, Farrant J, Makison C (2011) Comparison ofmultiple systems for laboratory whole room fumigation. Appl Biosaf 16:139–157

    Google Scholar 

  64. Meunier O, Meistermann C, Schwebel A (2009) Effectiveness and limits of the cleaners steam in hospitals. Pathol Biol 57:252–257

    Article  CAS  PubMed  Google Scholar 

  65. Griffith CJ, Dancer SJ (2009) Hospital cleaning: problems with steam cleaning and microfibre. J Hosp Infect 72:360–361

    Article  CAS  PubMed  Google Scholar 

  66. Boswell TC, Fox PC (2006) Reduction in MRSA environmental contamination with a portable HEPA-filtration unit. J Hosp Infect 63:47–54

    Article  CAS  PubMed  Google Scholar 

  67. Wren MWD, Rollins MSM, Jeanes A, et al (2008) Removing bacteria from hospital surfaces: a laboratory comparison of ultramicrofibre and standard cloths. J Hosp Infect 70:265–271

    Article  CAS  PubMed  Google Scholar 

  68. Hall T, Jeanes A, Mckain L, et al (2009) The mayday hospital cleaning study: relative performance of ultramicrofiber, with or without a novel copper-based biocide, against standard chlorinebased cleaning. Abstracts ICCAC

    Google Scholar 

  69. Société française d’hygiène hospitalière (2010) Surveiller et prévenir les infections associées aux soins (recommandation R62). http://www.sf2h.net/publications-SF2H/SF2H_surveiller-etprevenir-les-IAS-2010.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nseir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blazejewski, C., Wallet, F. & Nseir, S. Quoi de neuf dans les techniques de désinfection des chambres de réanimation ?. Réanimation 23, 256–262 (2014). https://doi.org/10.1007/s13546-014-0884-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-014-0884-y

Mots clés

Keywords

Navigation