Skip to main content
Log in

Place des inotropes en réanimation

Inotropic support in the intensive care unit

  • Mise au Point / Update
  • Published:
Réanimation

Résumé

La balance bénéfice/risque des agents inotropes est parfois difficile à appréhender. La plupart des agents inotropes positifs augmentent le calcium intracellulaire (avec le risque d’induire des arythmies et de l’apoptose notamment) et la consommation en oxygène dumyocarde. Pour autant, certaines situations cliniques nécessitent encore l’utilisation de ces molécules. La dobutamine reste probablement la molécule de choix dans la plupart de ces situations. De mécanisme d’action original (augmentation de la sensibilité des fibres au calcium) et probablement moins consommateur d’énergie que les catécholamines, le lévosimendan semble être prometteur. Ses indications restent à mieux définir et la molécule n’est pas disponible en France. Au cours du choc cardiogénique et des intoxications médicamenteuses par cardiotropes, la dobutamine reste le traitement inotrope de première intention (comme l’isoprénaline pour les intoxications par bétabloquants). Les doses élevées d’insuline (au moins 1 UI/kg/h) sont intéressantes dans ces intoxications à visée inotrope. En cas de cardiopathie de stress, l’utilisation de la dobutamine doit être prudente si elle est nécessaire, et en cas d’aggravation sous traitement, il faudra à l’inverse utiliser un bétabloquant, remplir et utiliser un vasopresseur. Lors du sepsis, la dobutamine doit probablement n’être utilisée que: 1) en cas de dysfonction myocardique avérée; 2) avec signes de dysoxie tissulaire. L’utilisation de bétabloquants dans ce contexte vient d’être testée et semble prometteuse mais nécessite des études cliniques complémentaires. Quelle que soit l’indication des inotropes, le bénéfice doit être souvent réévalué, et le traitement arrêté dès que la situation clinique le permet, voire avant, en cas d’aggravation.

Abstract

The benefit-risk ratio of inotropic agents is debated with drawbacks, mainly in relation to increased intracellular calcium, possibly responsible for arrhythmias and apoptosis, and increased oxygen consumption. Thus, clinical scenarios request caution when administering an inotropic agent. Dobutamine is the best first-line choice. Indications of levosimendan, a calcium fiber sensitizer still not marketed in France, remain controversial. In cardiogenic shock and cardiotoxicant poisoning, dobutamine (or isoprenaline for beta-blockers) is also the first-line agent, while high-dose insulin presents interesting effects. In contrast, in Takotsubo cardiomyopathy, dobutamine administration may be at risk: if dobutamine worsens the situation, betablockade should be preferred, concomitantly with fluids and vasopressors. In sepsis, dobutamine should be only used in case of septic cardiomyopathy or evidence for dysoxia. Beta-blockade, only tested in septic shock, seems interesting and requires further investigations. Whatever the indication is, the benefit of inotropic agent infusion should be repeatedly evaluated and stopped as soon as possible if sideeffects are evidenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Hasenfuss G, Teerlink JR (2011) Cardiac inotropes: current agents and future directions. Eur.Heart J 32:1838–1845

    Article  PubMed  CAS  Google Scholar 

  2. Hasenfuss G, Pieske B, Castell M, et al (1998) Influence of the novel inotropic agent levosimendan on isometric tension and calcium cycling in failing human myocardium. Circulation 98:2141–2147

    Article  PubMed  CAS  Google Scholar 

  3. Michaels AD, McKeown B, Kostal M, et al (2005) Effects of intravenous levosimendan on human coronary vasomotor regulation, left ventricular wall stress, and myocardial oxygen uptake. Circulation 111:1504–1509

    Article  PubMed  CAS  Google Scholar 

  4. Ajiro Y, Hagiwara N, Katsube Y, et al (2002) Levosimendan increases L-type Ca(2+) current via phosphodiesterase-3 inhibition in human cardiac myocytes. Eur J Pharmacol 435:27–33

    Article  PubMed  CAS  Google Scholar 

  5. Baron AD (1994) Hemodynamic actions of insulin. Am.J.Physiol 267:E187–E202

    PubMed  CAS  Google Scholar 

  6. Maier S, Aulbach F, Simm A, et al (1999) Stimulation of L-type Ca2+ current in human atrial myocytes by insulin. Cardiovasc.Res 44:390–397

    Article  PubMed  CAS  Google Scholar 

  7. von Lewinski D, Bruns S, Walther S, et al (2005) Insulin causes [Ca2+]i-dependent and [Ca2+]i-independent positive inotropic effects in failing human myocardium. Circulation 111:2588–2595

    Article  CAS  Google Scholar 

  8. Gao F, Gao E, Yue TL, et al (2002) Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 105:1497–1502

    Article  PubMed  CAS  Google Scholar 

  9. Cleland JG, Teerlink JR, Senior R, et al (2011) The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial. Lancet 378:676–683

    Article  PubMed  CAS  Google Scholar 

  10. Sabbah HN, Tocchetti CG, Wang M, et al (2013) Nitroxyl (HNO): A Novel Approach for the Acute Treatment of Heart Failure. Circ.Heart Fail 6:1250–1258

    Article  PubMed  CAS  Google Scholar 

  11. Mattera GG, Lo GP, Loi FM, et al (2007) Istaroxime: a new lusoinotropic agent for heart failure. Am J Cardiol 99:33A–40A

    Article  PubMed  CAS  Google Scholar 

  12. Gheorghiade M, Blair JE, Filippatos GS, et al (2008) Hemodynamic, echocardiographic, and neurohormonal effects of istaroxime, a novel intravenous inotropic and lusitropic agent: a randomized controlled trial in patients hospitalized with heart failure. J Am Coll Cardiol 51:2276–2285

    Article  PubMed  CAS  Google Scholar 

  13. Toischer K, Lehnart SE, Tenderich G, et al (2010) K201 improves aspects of the contractile performance of human failing myocardium via reduction in Ca2+ leak from the sarcoplasmic reticulum. Basic Res Cardiol 105:279–287

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Szokodi I, Tavi P, Foldes G, et al (2002) Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res 91:434–440

    Article  PubMed  CAS  Google Scholar 

  15. Barnes GD, Alam S, Carter G, et al (2013) Sustained cardiovascular actions of APJ agonism during renin-angiotensin system activation and in patients with heart failure. Circ Heart Fail 6:482–491

    Article  PubMed  CAS  Google Scholar 

  16. Felker GM, Benza RL, Chandler AB, et al (2003) Heart failure etiology and response to milrinone in decompensated heart failure: results from the OPTIME-CHF study. J Am Coll Cardiol 41:997–1003

    Article  PubMed  CAS  Google Scholar 

  17. Moiseyev VS, Poder P, Andrejevs N, et al (2002) Safety and efficacy of a novel calcium sensitizer, levosimendan, in patients with left ventricular failure due to an acute myocardial infarction. A randomized, placebo-controlled, double-blind study (RUSSLAN). Eur Heart J 23:1422–1432

    PubMed  CAS  Google Scholar 

  18. Follath F, Cleland JG, Just H, et al (2002) Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised doubleblind trial. Lancet 360:196–202

    Article  PubMed  CAS  Google Scholar 

  19. Mebazaa A, Nieminen MS, Packer M, et al (2007) Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE Randomized Trial. JAMA 297:1883–1891

    Article  PubMed  CAS  Google Scholar 

  20. McMurray JJ, Adamopoulos S, Anker SD, et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847

    Article  PubMed  Google Scholar 

  21. De Backer D, Biston P, Devriendt J, et al (2010) Comparison of dopamine and norepinephrine in the treatment of shock. N.Engl.J.Med 362:779–789

    Article  PubMed  Google Scholar 

  22. Russ MA, Prondzinsky R, Christoph A, et al (2007) Hemodynamic improvement following levosimendan treatment in patients with acute myocardial infarction and cardiogenic shock. Crit Care Med 35:2732–2739

    Article  PubMed  CAS  Google Scholar 

  23. Kerns W, Schroeder D, Williams C, et al (1997) Insulin improves survival in a canine model of acute beta-blocker toxicity. Ann Emerg Med 29:748–757

    Article  PubMed  Google Scholar 

  24. Megarbane B, Karyo S, Baud FJ (2004) The role of insulin and glucose (hyperinsulinaemia/euglycaemia) therapy in acute calcium channel antagonist and beta-blocker poisoning. Toxicol Rev 23:215–222

    Article  PubMed  CAS  Google Scholar 

  25. Engebretsen KM, Kaczmarek KM, Morgan J, Holger JS (2011) High-dose insulin therapy in beta-blocker and calcium channelblocker poisoning. Clin Toxicol (Phila) 49:277–283

    Article  CAS  Google Scholar 

  26. Cole JB, Stellpflug SJ, Ellsworth H, et al (2013) A blinded, randomized, controlled trial of three doses of high-dose insulin in poison-induced cardiogenic shock. Clin Toxicol (Phila) 51:201–207

    Article  CAS  Google Scholar 

  27. Patel NP, Pugh ME, Goldberg S, Eiger G (2007) Hyperinsulinemic euglycemia therapy for verapamil poisoning: a review. Am J Crit Care 16:498–503

    PubMed  Google Scholar 

  28. Varpula T, Rapola J, Sallisalmi M, Kurola J (2009) Treatment of serious calcium channel blocker overdose with levosimendan, a calcium sensitizer. Anesth.Analg 108:790–792

    Article  PubMed  Google Scholar 

  29. Castillo Rivera AM, Ruiz-Bailen M, Rucabado AL (2011) Takotsubo cardiomyopathy—a clinical review. Med Sci Monit 17: RA135–RA147

    Article  PubMed  Google Scholar 

  30. Song BG, Park SJ, Noh HJ, et al (2010) Clinical characteristics, and laboratory and echocardiographic findings in takotsubo cardiomyopathy presenting as cardiogenic shock. J.Crit Care 25:329–335

    Article  PubMed  CAS  Google Scholar 

  31. Haley JH, Sinak LJ, Tajik AJ, et al (1999) Dynamic left ventricular outflow tract obstruction in acute coronary syndromes: an important cause of new systolic murmur and cardiogenic shock. Mayo Clin Proc 74:901–906

    Article  PubMed  CAS  Google Scholar 

  32. Kyuma M, Tsuchihashi K, Shinshi Y, et al (2002) Effect of intravenous propranolol on left ventricular apical ballooning without coronary artery stenosis (ampulla cardiomyopathy): three cases. Circ J 66:1181–1184

    Article  PubMed  Google Scholar 

  33. Santoro F, Ieva R, Ferraretti A, et al (2013) Safety and feasibility of levosimendan administration in takotsubo cardiomyopathy: a case series. Cardiovasc Ther 31:e133–e137

    Article  PubMed  CAS  Google Scholar 

  34. Rabuel C, Mebazaa A (2006) Septic shock: a heart story since the 1960s. Intensive Care Med 32:799–807

    Article  PubMed  CAS  Google Scholar 

  35. Schmittinger CA, Dunser MW, Torgersen C, et al (2013) Histologic pathologies of the myocardium in septic shock: a prospective observational study. Shock 39:329–335

    Article  PubMed  CAS  Google Scholar 

  36. Silverman HJ, Penaranda R, Orens JB, Lee NH (1993) Impaired beta-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: association with myocardial hyporesponsiveness to catecholamines. Crit Care Med 21:31–39

    Article  PubMed  CAS  Google Scholar 

  37. Gattinoni L, Brazzi L, Pelosi P, et al (1995) A trial of goaloriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 333:1025–1032

    Article  PubMed  CAS  Google Scholar 

  38. Vieillard-Baron A, Caille V, Charron C, et al (2008) Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 36:1701–1706

    Article  PubMed  Google Scholar 

  39. Bouhemad B, Nicolas-Robin A, Arbelot C, et al (2009) Acute left ventricular dilatation and shock-induced myocardial dysfunction. Crit Care Med 37:441–447

    Article  PubMed  Google Scholar 

  40. Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  41. Jansen TC, van Bommel J, Schoonderbeek FJ, et al (2010) Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med 182:752–761

    Article  PubMed  Google Scholar 

  42. Leone M, Boyadjiev I, Boulos E, et al (2006) A reappraisal of isoproterenol in goal-directed therapy of septic shock. Shock 26:353–357

    Article  PubMed  CAS  Google Scholar 

  43. Annane D, Vignon P, Renault A, et al (2007) Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet 370:676–684

    Article  PubMed  CAS  Google Scholar 

  44. Ducrocq N, Kimmoun A, Furmaniuk A, et al (2012) Comparison of equipressor doses of norepinephrine, epinephrine, and phenylephrine on septic myocardial dysfunction. Anesthesiology 116:1083–1091

    Article  PubMed  CAS  Google Scholar 

  45. Levenbrown Y, Penfil S, Rodriguez E, et al (2013) Use of insulin to decrease septic shock-induced myocardial depression in a porcine model. Inflammation 36:1494–1502

    Article  PubMed  CAS  Google Scholar 

  46. Holger JS, Dries DJ, Barringer KW, et al (2010) Cardiovascular and metabolic effects of high-dose insulin in a porcine septic shock model. Acad Emerg Med 17:429–435

    Article  PubMed  Google Scholar 

  47. Tavernier B, Li JM, El Omar MM, et al (2001) Cardiac contractile impairment associated with increased phosphorylation of troponin I in endotoxemic rats. FASEB J 15:294–296

    PubMed  CAS  Google Scholar 

  48. Morelli A, De Castro S, Teboul JL, et al (2005) Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med 31:638–644

    Article  PubMed  Google Scholar 

  49. Fries M, Ince C, Rossaint R, et al (2008) Levosimendan but not norepinephrine improves microvascular oxygenation during experimental septic shock. Crit Care Med 36:1886–1891

    Article  PubMed  CAS  Google Scholar 

  50. Morelli A, Donati A, Ertmer C, et al (2010) Levosimendan for resuscitating the microcirculation in patients with septic shock: a randomized controlled study. Crit Care 14:R232

    Article  PubMed Central  PubMed  Google Scholar 

  51. Morelli A, Teboul JL, Maggiore SM, et al (2006) Effects of levosimendan on right ventricular afterload in patients with acute respiratory distress syndrome: a pilot study. Crit Care Med 34:2287–2293

    Article  PubMed  CAS  Google Scholar 

  52. Levy RJ, Piel DA, Acton PD, et al (2005) Evidence of myocardial hibernation in the septic heart. Crit Care Med 33:2752–2756

    Article  PubMed  Google Scholar 

  53. Aboab J, Sebille V, Jourdain M, et al (2011) Effects of esmolol on systemic and pulmonary hemodynamics and on oxygenation in pigs with hypodynamic endotoxin shock. Intensive Care Med 37:1344–1351

    Article  PubMed  CAS  Google Scholar 

  54. Rudiger A (2010) Beta-block the septic heart. Crit Care Med 38: S608–S612

    Article  PubMed  Google Scholar 

  55. Morelli A, Ertmer C, Westphal M, et al (2013) Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 310:1683–1691

    Article  PubMed  CAS  Google Scholar 

  56. Morelli A, Donati A, Ertmer C, et al (2013) Microvascular effects of heart rate control with esmolol in patients with septic shock: a pilot study. Crit Care Med 41:2162–2168

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Favory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satre Buisson, L., Poissy, J., Girardie, P. et al. Place des inotropes en réanimation. Réanimation 23, 167–175 (2014). https://doi.org/10.1007/s13546-014-0860-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-014-0860-6

Mots clés

Keywords

Navigation