Skip to main content
Log in

Bivelocity Picture in the Nonrelativistic Limit of Relativistic Hydrodynamics

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We discuss the nonrelativistic limit of the relativistic Navier-Fourier-Stokes (NFS) theory. The next-to-leading order relativistic corrections to the NFS theory for the Landau-Lifshitz fluid are obtained. While the lowest order truncation of the velocity expansion leads to the usual NFS equations of nonrelativistic fluids, we show that when the next-to-leading order relativistic corrections are included, the equations can be expressed concurrently with two different fluid velocities. One of the fluid velocities is parallel to the conserved charge current (which follows the Eckart definition) and the other one is parallel to the energy current (which follows the Landau-Lifshitz definition). We compare this next-to-leading order relativistic hydrodynamics with bivelocity hydrodynamics, which is one of the generalizations of the NFS theory and is formulated in such a way to include the usual mass velocity and also a new velocity, called the volume velocity. We find that the volume velocity can be identified with the velocity obtained in the Landau-Lifshitz definition. Then, the structure of bivelocity hydrodynamics, which is derived using various nontrivial assumptions, is reproduced in the NFS theory including the next-to-leading order relativistic corrections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. However, the complexity of the generic stability of these theories led some authors to reconsider first-order theories in order to establish this property properly [28].

  2. It is well known that higher-order kinetic corrections to the NFS theory leads to the Burnett and super-Burnett equations [38]. The relation between these kinetic corrections and the bivelocity picture was discussed in Refs. [24, 25].

  3. The time scale of the evolution of non-conserved quantities are considered to be short and these are usually not included as hydrodynamic variables.

References

  1. W.A. Hiscock, L. Lindblom, Phys. Rev. D 31, 725 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  2. K. Tsumura, T. Kunihiro, Phys. Lett. B 668, 425 (2008)

    Article  ADS  Google Scholar 

  3. K. Tsumura, T. Kunihiro, Prog. Theor. Phys. 126, 761 (2011)

    Article  ADS  MATH  Google Scholar 

  4. P. Ván, J. Stat. Mech. 0902, P02054 (2009)

    Google Scholar 

  5. P. Ván, T.S. Biró, Phys. Lett. B. 709, 106 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  6. A.L. Garcia-Perciante, L.S. Garcia-Colin, A. Sandoval-Villalbazo, Gen. Rel. Grav. 41, 1645 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. T. Osada, Phys. Rev. C 81, 024907 (2010)

    Article  ADS  Google Scholar 

  8. T. Osada. Phys. Rev. C 85, 014906 (2012)

  9. W. Israel, Ann. Phys. (N.Y.), A. 100, 310 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  10. W. Israel, J.M. Stewart, Ann. Phys. (N.Y.), A. 118, 341 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  11. C. Eckart, Phys. Rev. 58, 919 (1940)

    Article  ADS  Google Scholar 

  12. L.D. Landau, E.M. Lifshitz. Fluid Mechanics (Addison-Wesley, Reading, 1975)

    Google Scholar 

  13. S. Chandrasekhar, ApJ 142, 1488 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Chandrasekhar, ApJ 158, 45 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  15. P.J. Greenberg, ApJ 164, 569 (1971)

    Article  ADS  Google Scholar 

  16. H. Brenner, Phys. Rev. E 70, 061201 (2004)

    Article  ADS  Google Scholar 

  17. H. Brenner, Physica A349, 60 (2005)

    Article  ADS  Google Scholar 

  18. H. Brenner, Physica A349, 11 (2005)

  19. H. Brenner, Physica A388, 3391 (2009)

  20. H. Brenner, Physica A389, 1297 (2010)

    Google Scholar 

  21. H. Brenner, Int. J. Eng. Sci. 47, 902 (2009)

    Article  MATH  Google Scholar 

  22. H. Brenner, J. Chem. Phys. 132, 054106 (2010)

    Article  ADS  Google Scholar 

  23. H. Brenner, Int. J. Eng. Sci. 47, 930 (2009)

    Article  MATH  Google Scholar 

  24. H. Brenner, Phys. Rev. E 86, 016307 (2012)

    Article  ADS  Google Scholar 

  25. H. Brenner, Int. J. Eng. Sci. 54, 67 (2012)

    Article  Google Scholar 

  26. H. Brenner, Phys. Rev. E 87, 013014 (2013)

    Article  ADS  Google Scholar 

  27. I.E. Dzyaloshinskii, G.E. Volovick, Ann. Phys. (N.Y.) 125, 67 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  28. Y.L. Klimontovich, Theor. Math. Phys. 92, 909 (1992)

    Article  MathSciNet  Google Scholar 

  29. H.C. Öttinger. Beyond Equilibrium Thermodynamics (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  30. I.A. Grauar, J.G. Méolens, D.E. Zeitoun, Microfluid. Nanofluid. 2, 64 (2006)

    Article  Google Scholar 

  31. C.J. Greenshields, J.M. Reese, J. Fluid Mech. 580, 407 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. S.K. Dadzie, J.M. Reese, C.R. McInnes, Physica A387, 6079 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  33. B.C. Eu, J. Chem. Phys. 129, 094502 (2008)

    Article  ADS  Google Scholar 

  34. N. Dongari, F. Durst, S. Chakraborty, Microfluid. Nanofluid. 9, 831 (2010)

    Article  Google Scholar 

  35. T. Koide, T. Kodama, arXiv:1105.6256

  36. T. Koide, T. Kodama, J. Phys. A: Math. Theor. 45, 255204 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  37. T. Koide, J. Phys.: Conf. Ser. 410, 012025 (2013)

    ADS  Google Scholar 

  38. L.S. García-Colin, R.M. Velasco, F.J. Uribe, Phys. Rep. 465, 149 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  39. G.S. Denicol, et al., J. Phys. G35, 115102 (2008)

    Article  ADS  Google Scholar 

  40. S. Pu, T. Koide, D.H. Rischke, Phys. Rev. D. 81, 114039 (2010)

    Article  ADS  Google Scholar 

  41. G.S. Denicol, et al., J. Phys. G36, 035103 (2009)

    Article  ADS  Google Scholar 

  42. S.R. de Groot, P. Mazur. Non-equilibrium thermodynamics, (North-Holland, 1962)

Download references

Acknowledgments

T. K. acknowledge discussions with G. S. Denicol, X. Huang, and L. S. García-Colinin in the initial stages of the present study and financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). R.O.R. is partially supported by research grants from CNPq and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). G. S. V. is supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudnei O. Ramos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koide, T., Ramos, R.O. & Vicente, G.S. Bivelocity Picture in the Nonrelativistic Limit of Relativistic Hydrodynamics. Braz J Phys 45, 102–111 (2015). https://doi.org/10.1007/s13538-014-0288-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-014-0288-5

Keywords

Navigation