Skip to main content
Log in

Response Function Theory for Many-Body Systems Away from Equilibrium: Conditions of Ultrafast-Time and Ultrasmall-Space Experimental Resolution

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

A response function theory and scattering theory applicable to the study of physical properties of systems driven arbitrarily far removed from equilibrium, specialized for dealing with ultrafast processes, and in conditions of space resolution (including the nanometric scale) are presented. The derivation is done in the framework of a Gibbs-style nonequilibrium statistical ensemble formalism. The observable properties are shown to be connected with time- and space-dependent correlation functions out of equilibrium. A generalized fluctuation-dissipation theorem, which relates these correlation functions with generalized susceptibilities, is derived. The method of nonequilibrium-thermodynamic Green functions, which proves useful for calculations, is also presented. Two illustrative applications of the formalism, which study optical responses in ultrafast laser spectroscopy and Raman scattering of electrons in III-N semiconductors (of “blue diodes”) driven away from equilibrium by electric fields of moderate to high intensities, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Kubo, Oppening address at the Oji seminar. Prog. Theor. Phys. (Japan) 64 (1978)

  2. S. Stix, Little big science: an overview, and articles thereafter. Sci. Am. 285(3), 26 (2001)

    Article  Google Scholar 

  3. F. Family, T. Vicsek. Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991)

    Book  MATH  Google Scholar 

  4. R. Luzzi, A.R. Vasconcellos, J.G. Ramos, Riv. Nuovo Cimento. 30(3), 95 (2007)

    Google Scholar 

  5. A. Renyi, On measures of entropy and information, in Proc. 4th Berkeley Symposium Math. Stat. Prob., vol 1 (1961), p. 547

  6. A. Renyi. Probability Theory (North Holland, Amsterdam, 1970)

    Google Scholar 

  7. P. Jizba, T. Arimitzu, Ann. Phys. (NY). 312, 17 (2004)

    Article  ADS  MATH  Google Scholar 

  8. D.N. Zubarev. Non Equilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974)

    Google Scholar 

  9. D.N. Zubarev, V. Morozov, G. Röpke. Statistical Mechanics of Non Equilibrium Processes I (Academie Verlag-Wiley VCH, Berlin, 1996)

    Google Scholar 

  10. D.N. Zubarev, V. Morozov, G. Röpke. Statistical Mechanics of Non Equilibrium Processes II (Academie Verlag-Wiley VCH, Berlin, 1997)

    Google Scholar 

  11. A. Akhiezer, S. Peletminskii. Methods of Statistical Physics (Pergamon, Oxford, 1981)

    Google Scholar 

  12. R. Luzzi, A.R. Vasconcellos, J.G. Ramos. Predictive Statistical Mechanics: A Non-equilibrium Ensemble Formalism (Kluwer Academic, Dordrecht, 2002)

    Book  Google Scholar 

  13. R. Luzzi, A.R. Vasconcellos, J.G. Ramos, Riv. Nuovo Cimento. 29 (2), 1–82 (2006)

    Google Scholar 

  14. M.H. Kalos, P.A. Whitlock. Monte Carlo Methods (Wiley, New York, 2007)

    Google Scholar 

  15. B.J. Adler, D.J. Tildesley. Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)

    Google Scholar 

  16. L. Lauck, A.R. Vasconcellos, R. Luzzi, Phys. A. 168, 789 (1990)

    Article  Google Scholar 

  17. C.G. Rodrigues, V.N. Freire, J.A.P. Costa, A.R. Vasconcellos, R. Luzzi, Phys. Stat. Sol. (b). 216, 35 (1999)

    Article  ADS  Google Scholar 

  18. C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, V. Lemos, V.N. Freire, Mater. Sci. Forum. 338–342, 1579 (2000)

    Article  Google Scholar 

  19. A.R. Vasconcellos, R. Luzzi, C.G. Rodrigues, V.N. Freire, Appl. Phys. Lett. 82, 2455 (2003)

    Article  ADS  Google Scholar 

  20. C.G. Rodrigues, V.N. Freire, A.R. Vasconcellos, R. Luzzi, Appl. Phys. Lett. 76, 1893 (2000)

    Article  ADS  Google Scholar 

  21. C.G. Rodrigues, A.R. Vasconcellos, V.N. Freire, R. Luzzi, J. Appl. Phys. 90, 1879 (2001)

    Article  ADS  Google Scholar 

  22. C.G. Rodrigues, A.R. Vasconcellos, V.N. Freire, R. Luzzi, J. Appl. Phys. 95, 4914 (2004)

    Article  ADS  Google Scholar 

  23. C.G. Rodrigues, A.R. Vasconcellos, V.N. Freire, R. Luzzi, J. Appl. Phys. 99, 073701 (2006)

    Article  ADS  Google Scholar 

  24. C.G. Rodrigues, A.R. Vasconcellos, V.N. Freire, R. Luzzi, J. Appl. Phys. 102, 073714 (2007)

    Article  ADS  Google Scholar 

  25. C.G. Rodrigues, V.N. Freire, A.R. Vasconcellos, R. Luzzi, Braz. J. Phys. 32(2A), 439 (2002)

    Article  ADS  Google Scholar 

  26. C.G. Rodrigues, V.N. Freire, A.R. Vasconcellos, R. Luzzi, Braz. J. Phys. 36(2A), 255 (2006)

    Article  ADS  Google Scholar 

  27. A.R. Vasconcellos, M.J.S.P. Brasil, R. Luzzi, A.A.P. Silva, A.H.S. Leite, J. Appl. Phys. 106, 043503 (2009)

    Article  ADS  Google Scholar 

  28. C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, V.N. Freire, J. Phys. Condens. Matter. 19, 346214 (2007)

    Article  Google Scholar 

  29. C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, Phys. Status Solidi (b). 246(2), 417 (2009)

    Article  ADS  Google Scholar 

  30. A.R.B. Castro, A.R. Vasconcellos, R. Luzzi, Rev. Scient. Inst. 81, 073102 (2010)

    Article  ADS  Google Scholar 

  31. C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, J. Appl. Phys. 108, 033716 (2010)

    Article  ADS  Google Scholar 

  32. A.R. Vasconcellos, A.R.B. Castro, C.A.B. Silva, R. Luzzi, AIP Adv. 3, 072106 (2013)

    Article  ADS  Google Scholar 

  33. C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, J. Appl. Phys. 113, 113701 (2013)

    Article  ADS  Google Scholar 

  34. C.G. Rodrigues, A.R. Vasconcellos, V.N. Freire, R. Luzzi, J. Appl. Phys. 98, 043702 (2005)

  35. C.G. Rodrigues, A.R. Vasconcellos, V.N. Freire, R. Luzzi, J. Appl. Phys. 98, 043703 (2005)

    Article  ADS  Google Scholar 

  36. J.G. Kirkwood, J. Chem. Phys. 14, 180 (1946)

    Article  ADS  Google Scholar 

  37. M.S. Green, J. Chem. Phys. 20, 1281 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  38. H. Mori, I. Oppenheim, J. Ross, in Some topics in quantum statistics, in Studies in Statistical Mechanics I, ed. by J. de Boer, G.E. Uhlenbeck (North Holland, Amsterdam, 1962)

    Google Scholar 

  39. H. Mori, Progr. Theor. Phys. (Japan). 33, 423 (1965)

    Article  ADS  MATH  Google Scholar 

  40. R. Zwanzig, in Statistical mechanics of irreversibility. in Lectures in Theoretical Physics, ed. by W.E. Brittin, B.W. Downs, J. Downs, Vol. 3 (Wiley-Interscience, New York, 1961)

    Google Scholar 

  41. A. Salam, V.S. Vladimorov, A.A. Logunov, Theor. Math. Phys. 92, 817 (1993)

    Article  Google Scholar 

  42. N.S. Krylov. Works on The Foundations of Statistical Mechanics (Princeton University Press, Princeton, 1979)

    Google Scholar 

  43. S.V. Peletminski, A.A. Yatsenko, JETP. 26, 773 (1968)

    ADS  Google Scholar 

  44. D.N. Zubarev, V.P. Kalashnikov, Theor. Math. Phys. 96, 108 (1970)

    Google Scholar 

  45. E.T. Jaynes, in Papers on Probability, Statistics and Statistical Physics, ed. by R.D. Rosenkrantz (Reidel, Dordrecht, 1983)

  46. E.T. Jaynes, in Predictive statistical mechanics, in Frontiers of Non Equilibrium Statistical Physics, ed. by G.T. Moore, M.O. Scully (Plenum, New York, 1986), pp. 33–55

    Chapter  Google Scholar 

  47. C.E. Shannon, Bell Sys. Tech. J. 27, 379–423 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  48. C.E Shannon, W. Weaver. The Mathematical Theory of Communication (University of Illinois Press, Urbana, 1949)

    MATH  Google Scholar 

  49. P.C. Martin, in Measurements and correlation functions, in Many-Body Physics, ed. by C.D. Witt, R. Balian (Gordon and Breach, New York, 1968), pp. 37–136

    Google Scholar 

  50. L. Hove, Phys. Rev. 95, 249 and 1374 (1954)

    ADS  Google Scholar 

  51. H.J. Kreuzer. Non Equilibrium Thermodynamics and Its Statistical Foundations (Claredon, Oxford, 1981)

    Google Scholar 

  52. V.P. Kalashnikov, Theor. Math. Phys. 9, 1003 (1971)

    Article  Google Scholar 

  53. V.P. Kalashnikov, Theor. Math. Phys. 35, 362 (1978)

    Article  Google Scholar 

  54. R. Luzzi, A.R. Vasconcellos, J. Stat. Phys. 23, 539 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  55. H. Nyquist, Phys. Rev. 32, 110 (1928)

    Article  ADS  Google Scholar 

  56. H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1951)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  57. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  58. R. Kubo, Rep. Prog. Phys. 29, 255 (1966)

    Article  ADS  Google Scholar 

  59. R. Zon, E.G.D. Cohen, Phys. Rev. Lett. 91, 110601 (2003)

  60. D.J. Evans, D.J. Searles, Adv. Phys. 51, 1529 (2002)

    Article  ADS  Google Scholar 

  61. R. Luzzi, A.R. Vasconcellos, J. Casas-Vazquez, D. Jou, J. Chem. Phys. 107, 7383 (1997)

    Article  ADS  Google Scholar 

  62. R. Luzzi, A.R. Vasconcellos, J. Casas-Vazquez, D. Jou, Phys. A. 234, 699 (1997)

    Article  Google Scholar 

  63. R. Luzzi, A.R. Vasconcellos, J. Casas-Vazquez, D. Jou, Phys. A. 248, 111 (1998)

    Article  Google Scholar 

  64. C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, Transp. Theor. Stat. Phys. 29, 733 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  65. V.P. Kalashnikov, Theor. Math. Phys. 9, 1003 (1972)

    Article  Google Scholar 

  66. V.P. Kalashnikov, Theor. Math. Phys. 35, 362 (1978)

    Article  Google Scholar 

  67. D.N. Zubarev, Uspekhi. 3, 320 (1960)

    Article  MathSciNet  Google Scholar 

  68. V.L. Tyablikov. Methods in the Quantum Theory of Magnetism (Plenum, New York, 1974)

    Google Scholar 

  69. J.R. Madureira, A.R. Vasconcellos, R. Luzzi, L. Lauck, Phys. Rev. E. 57, 3637 (1998)

    Article  ADS  Google Scholar 

  70. R. Luzzi, A.R. Vasconcellos, J. Raman Spectrosc. 10, 28 (1981)

    Article  ADS  Google Scholar 

  71. A.R. Vasconcellos, R. Luzzi, J. Raman Spectrosc. 14, 39 (1983)

    Article  ADS  Google Scholar 

  72. L. Hove, in Quantum Theory of Many-Particle Systems, ed. by L. van Hove, N.M. Hugenholtz, L.P. Howland (Benjamin, New York, p. 1961

  73. G.L. Cho, W. Kütt, H. Kurz, Phys. Rev. Lett. 65, 764 (1990)

    Article  ADS  Google Scholar 

  74. W. Albrecht, T. Kruse, H. Kurz, Phys. Rev. Lett. 69, 1451–1454 (1992)

    Article  ADS  Google Scholar 

  75. T. Pfeifer, W. Kütt, R. Scholz, Phys. Rev. Lett. 69, 3248 (1992)

    Article  ADS  Google Scholar 

  76. R. Scholz, T. Pfeifer, H. Kurz, Phys. Rev. B. 47, 16229 (1993)

    Article  ADS  Google Scholar 

  77. H.J. Zeiger, J. Vidal, T.K. Cheng, E.P. Ippen, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B. 45, 768 (1992)

    Article  ADS  Google Scholar 

  78. A.V. Kutnevsov, C.J. Stanton, Phys. Rev. Lett. 73, 3243 (1994)

    Article  ADS  Google Scholar 

  79. A.R. Vasconcellos, R. Luzzi, A.J. Madureira, J. Phys.: Condens. Matter. 12, 5325 (2000)

    ADS  Google Scholar 

  80. A.C. Algarte, A.R. Vasconcellos, R. Luzzi, Phys. Rev. B. 54, 11311 (1996)

    Article  ADS  Google Scholar 

  81. A.C. Algarte, A.R. Vasconcellos, R. Luzzi, Braz. J. Phys. 26, 543 (1996)

    ADS  Google Scholar 

  82. C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, J. Phys. D: Appl. Phys. 38, 3584–3589 (2005)

    Article  ADS  Google Scholar 

  83. C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, Solid State Commun. 140, 135–140 (2006)

    Article  ADS  Google Scholar 

  84. P. Wolff, in Light Scattering Spectra of Solids, ed. by G.B. Wright (Springer, New York, 1969)

  85. A. Mooradian, in Light Scattering Spectra of Solids, ed. by G.B. Wright (Springer, New York, 1969)

  86. A.A.P. Silva, A.C. Algarte, A.R. Vasconcellos, R. Luzzi, J. Appl. Phys. 90, 3973 (2001)

    Article  ADS  Google Scholar 

  87. N.M. Johnson, A.V. Nurmikko, S.P. DenBoars, Blue Diode Lasers. Phys. Today. 53 (10), 31 (2000)

    Article  Google Scholar 

  88. C.G. Rodrigues, A.A.P. Silva, C.A.B. Silva, A.R. Vaconcellos, J.G. Ramos, R. Luzzi, Braz. J. Phys. 40, 63–91 (2010)

    Article  ADS  Google Scholar 

  89. C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, Eur. Phys. J. B. 72 (1), 67 (2009)

    Article  ADS  Google Scholar 

  90. R. Zwanzig, in Where we go from here?. in Perspectives in Statistical Mechanics, ed. by H.J. Raveché (North Holland, Amsterdam, 1981)

    Google Scholar 

  91. N.N. Bogoliubov, in Problems of a dynamical theory in statistical physics. in Studies in Statistical Physics, ed. by J. de Boer, G.E. Uhlenbeck (North Holland, Amsterdam, 1962)

    Google Scholar 

  92. R. Peierls, in Some simple remarks on the basis of transport theory. in Lecture Notes in Physics, ed. by J. Ehlers, K. Hepp, H.A. Weidenmuller, Vol. 31 (Springer, Berlin, 1974)

    Google Scholar 

  93. H. Mori, I. Oppenheim, J. Ross, in Some topics in quantum statistics. in Studies in Statistical Mechanics I, ed. by J. de Boer, G.E. Uhlenbeck (Amsterdam, North Holland, 1962)

    Google Scholar 

  94. N.N. Bogoliubov, Vol. 1. Lectures in Quantum Mechanics (Gordon and Breach, New York, 1967)

    Google Scholar 

  95. N.N. Bogoliubov, Vol. 2. Lectures in Quantum Mechanics (Gordon and Breach, New York, 1970)

    Google Scholar 

  96. W.M. Elsasser, Phys. Rev. 52, 987 (1937)

    Article  ADS  Google Scholar 

  97. E.T. Jaynes, in Physics and Probability, ed. by W.T. Grandy, P.W. Milonni (Cambridge University Press, Cambridge, 1993), pp. 261–275

  98. E.T. Jaynes, in Maximum Entropy and Bayesian Methods, ed. by W.T. Grandy, L.H. Schick (Kluwer Academic, Dordrecht, 1991), pp. 1–13

  99. B. Robertson, Phys. Rev. 144, 151–161 (1966)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  100. B. Robertson, Phys. Rev. 160, 175–183 (1967)

    Article  ADS  Google Scholar 

  101. E.T. Jaynes. Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  102. J. Bricmont, in Chance in Physics, ed. by J. Bricmont, et al. (Springer, Heidelberg, 2001)

  103. J. Bricmont, Phys. Mag. 17, 159–208 (1995)

    Google Scholar 

  104. J. Bricmont, Vol. 775. The Flight from Science and Reason, Annals New York Academy of Sciences (NYAS, New York, 1996), pp. 131–175

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge partial financial support received from the São Paulo State Research Agency (FAPESP), Goiás State Research Agency (FAPEG), and the Brazilian National Research Council (CNPq). The authors are CNPq Research Fellows.

In Memoriam: With very sad feelings, we regret to report the passing away of our dear colleague Prof. Dr. Áurea Rosas Vasconcellos, a genuine, devoted, and extremely competent teacher and researcher with fervent dedication to Theoretical Physics in the Condensed Matter area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clóves G. Rodrigues.

Appendix: The Nonequilibrium Statistical Operator

Appendix: The Nonequilibrium Statistical Operator

The construction of nonequilibrium statistical ensembles, that is, a nonequilibrium statistical ensemble formalism, NESEF for short [813], basically consisting of deriving a nonequilibrium statistical operator (probability distribution in the classical case) has been attempted along several lines. In a brief summarized way, we describe the construction of NESEF within a heuristic approach. In this context, several important points must be carefully taken into account in each case under consideration:

  1. 1.

    Choice of the basic variables. The choices for equilibrium and for nonequilibrium are different; for systems in equilibrium, it suffices to consider the constants of motion. To choose the variables for systems out of equilibrium, we must identify macroscopic processes and measurements and focus attention not only on the observables, but also on the character and expectations concerning the evolution equations for these variables [12, 13, 90]. Although all observables—along with their correlations, in certain cases—must be dealt with at the initial stage, as time elapses more and more contracted descriptions become possible as Bogoliubov’s principle of correlation weakening and the accompanying hierarchy of relaxation times comes into play [91].

  2. 2.

    Irreversibility (or Eddington’s arrow of time). Concerning this facet of the problem, Rudolf Peierls has stated that “In any theoretical treatment of transport problems, it is important to realize at what point the irreversibility has been incorporated. If it has not been incorporated, the treatment is wrong. A description of the situation that preserves the reversibility in time is bound to give the answer zero or infinity for any conductivity. If we do not see clearly where the irreversibility is introduced, we do not clearly understand what we are doing” [92].

  3. 3.

    Historicity. Proper treatment must incorporate the entire past dynamics of the system, or historicity effects, from a starting description of the macrostate of the sample in the experiment under study, say at t 0, up to the time t when a measurement is performed. This is a quite important point in the case of dissipative systems, as emphasized among others by John Kirkwood, Melvin Green, Robert Zwanzig, and Hazime More [3640]. It implies that the history of the system is not merely the series of events involving the system, but the series of transformations along time through which the system progressively comes into being at the measurement time t, through the evolution governed by the laws of mechanics [93]

Concerning the choice of the basic variables, in contrast with the equilibrium case, immediately after the open N-particle system, in contact with external sources and reservoirs, has been driven out of equilibrium, it becomes necessary to describe its state in terms of all its observables and, in certain instances, to introduce direct and cross-correlations. As time elapses, however, Bogoliubov’s principle of correlation weakening allows us to introduce increasing contractions of descriptions.

On the question of irreversibility, Nicolai S. Krylov [42] considered that there always exists a physical interaction between the measured system and the external world that is constantly “jolting” the system out of its exact microstate. Thus, the instability of trajectories and the unavoidable finite interaction with the outside would guarantee the validity of a “crudely prepared” macroscopic description. In the absence of a proper way to introduce this effect, one needs to resort to the interventionist’s approach, which is grounded on this ineluctable randomization process and leads to the asymmetric evolution of the macrostate.

The “intervention” consists of introducing in the Liouville equation for the statistical operator of the otherwise isolated system, a special source accounting for Krylov’s “jolting” effect, in the following form (for the logarithm of the statistical operator):

$$ \frac{\partial}{\partial t}\ln \mathcal{R}_{\varepsilon}(t) + \frac{1}{i \hbar}[\ln \mathcal{R}_{\varepsilon}(t),\hat{H}] = - \varepsilon \lbrack \ln \mathcal{R}_{\varepsilon}(t) - \ln \bar{\mathcal{R}}(t,0)], $$
(211)

where ε (effectively the reciprocal of a relaxation time) is taken to go to +0 after the average values have been computed.

This mathematically inhomogeneous term, in the otherwise normal Liouville equation, implies a continuous tendency to relax the statistical operators toward a referential distribution, \(\bar {\mathcal {R}}\), which, as discussed below, represents an instantaneous quasi-equilibrium condition.

We can regard (211) as a regular Liouville equation with an infinitesimal source, which provides Bogoliubov’s symmetry breaking of time reversal and justifies disregarding the advanced solutions [8, 12, 13, 94, 95]. This is described by a Poisson distribution and the result at time t is obtained by averaging over all \(t^{\prime }\) in the interval (t 0,t), since the solution of (211) is

$$ \mathcal{R}_{\varepsilon}(t) = \exp \left\{ -\hat{S}(t,0) + \int \limits_{t_{0}}^{t}dt^{\prime }e^{\varepsilon (t^{\prime }-t)}\frac{d}{dt^{\prime }}\hat{S}(t^{\prime },t^{\prime }-t)\right\} , $$
(212)

where

$$ \hat{S}(t,0) = -\ln \bar{\mathcal{R}}(t,0), $$
(213)
$$\begin{array}{@{}rcl@{}} \hat{S}(t^{\prime },t^{\prime }-t) &=& \exp \left\{ -\frac{1}{i\hbar }(t^{\prime }-t) \hat{H} \right\} \hat{S}(t^{\prime},0) \\ && \times\exp \left\{ \frac{1}{i\hbar }(t^{\prime }-t)\hat{H}\right\} , \end{array} $$
(214)

and the initial-time condition at time t 0, when the formalism begins to be applied, is

$$ \mathcal{R}_{\varepsilon }(t_{0})=\bar{\mathcal{R}}(t_{0},0). $$
(215)

The first time variables in the arguments of both \(\bar {\mathcal {R}}\) and \(\hat {S}\) refer to the evolution of the nonequilibrium-thermodynamic variables, and the second time variables, to the time evolution of the dynamical variables, both of which affect the operator.

The time t 0, which starts the statistical description, is usually taken in the remote past (\(t_{0}\rightarrow -\infty \)), which introduces an adiabatic switching-on of the relaxation process. In (212), the time integration in the interval (t 0,t) is weighted by the kernel \(\exp \{ \varepsilon (t^{\prime }-t) \}\). The presence of this kernel introduces a kind of evanescent history as the system macrostate evolves toward the future from the boundary condition of (215) at time (\(t_{0}\rightarrow -\infty \)), a fact evidenced in the resulting kinetic theory [813, 16, 38], which clearly indicates that a fading memory of the dynamical process has been introduced. The statistical operator can be written in the form

$$ \mathcal{R}_{\varepsilon}(t)=\bar{\mathcal{R}}(t,0)+\mathcal{R}^{\prime} _{\varepsilon }(t)\;. $$
(216)

involving the auxiliary probability distribution \(\bar {\mathcal {R}}(t,0)\), plus \(\mathcal {R}^{\prime }_{\varepsilon }(t)\), which contains the historicity and irreversibility effects.

In most cases, we can consider the system as composed of the system of interest, i.e., the system on which we are performing an experiment, and ideal reservoirs in contact with it. Therefore, we can write the expression

$$ \bar{\mathcal{R}}(t,0) = \bar{\varrho}(t,0)\times \varrho_{\text{R}} \; . $$
(217)

and

$$ \mathcal{R}_{\varepsilon }(t)=\varrho_{\varepsilon }(t)\times \varrho_{\text{R}} \; , $$
(218)

where ϱ ε (t) is the statistical operator of the nonequilibrium system, \(\bar {\varrho }\) the auxiliary one, and ϱ R the stationary operator for the ideal reservoirs, with ϱ ε (t) then given by the equality

$$ \varrho_{\varepsilon }(t)=\exp \left\{ -\hat{S}(t,0)+\int\limits_{-\infty }^{t}dt^{\prime }e^{\varepsilon (t^{\prime }-t)}\frac{d}{dt^{\prime }}\hat{S}(t^{\prime },t^{\prime }-t)\right\} \, , $$
(219)

with the initial value \(\bar {\varrho }(t_{0},0)\) (\(t_{0}\rightarrow -\infty \)), and where

$$ \hat{S}(t,0)=-\ln \bar{\varrho}(t,0) \;, $$
(220)

Finally, we have to provide the auxiliary statistical operator \(\bar {\varrho }(t,0)\). This operator, sometimes dubbed the quasi-equilibrium statistical operator, expresses an instantaneous distribution at time t describing a “frozen” equilibrium that defines the macroscopic state of the system at that moment. On the basis of this notion (or, alternatively, via the variational procedure [12, 13, 96104]) and considering the description of the system nonequilibrium state in terms of the basic set of dynamical variables \(\hat {P}_{j}\), the reference or instantaneous quasi-equilibrium statistical operator is taken as a canonical-like one given by the equality

$$ \bar{\varrho}(t,0)=\exp \{-\phi (t)-{\sum\limits_{j}^{n}}F_{j}(t)\hat{P}_{j}\}\;, $$
(221)

with ϕ(t) ensuring the normalization of \(\bar {\varrho }\) and playing the role of a logarithm of a partition function, say, \(\phi (t)=\ln \bar {Z}(t)\).

Moreover, in (221), F j is the nonequilibrium-thermodynamic variable associated with the basic dynamical variable \(\hat {P}_{j}\). The nonequilibrium-thermodynamic space of states is composed by the basic variables {Q j (t)}, which comprise the averages of the \(\{ \hat {P}_{j} \}\) over the nonequilibrium ensemble, namely,

$$ Q_{j}(t) = \text{Tr}\{\hat{P}_{j}\varrho_{\varepsilon }(t)\}\,, $$
(222)

which are then functionals of the {F j (t)} and there follow the equations of state

$$ Q_{j}(t) = - \frac{\delta \phi (t)}{\delta F_{j}(t)}=-\frac{\delta \ln \bar{Z}(t)}{\delta F_{j}(t)} \, , $$
(223)

where δ denotes functional derivative.

Moreover,

$$ \bar{S}(t) = \text{Tr}\{ \hat{\bar{S}}(t,0)\bar{\varrho}(t,0)\} = - \text{Tr}\{\bar{\varrho}(t,0)\ln \bar{\varrho}(t,0)\} \, , $$
(224)

is the so-called informational entropy characteristic of the distribution \(\bar {\varrho }\), a functional of the basic variables {Q j (t)}, in terms of which the following alternative form of the equations of state can be written:

$$ -\frac{\delta \bar{S}(t)}{\delta Q_{j}(t)}=F_{j}(t)\,, $$
(225)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, C.G., Vasconcellos, Á.R., Ramos, J.G. et al. Response Function Theory for Many-Body Systems Away from Equilibrium: Conditions of Ultrafast-Time and Ultrasmall-Space Experimental Resolution. Braz J Phys 45, 166–193 (2015). https://doi.org/10.1007/s13538-014-0280-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-014-0280-0

Keywords

Navigation