Skip to main content
Log in

An insight into deltamethrin induced apoptotic calcium, p53 and oxidative stress signalling pathways

  • Mini Review
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Deltamethrin (DLM), a type 2 synthetic pyrethroid insecticide, is widely used in home and agricultural pest control. Humans are exposed to DLM by various modes like air, water, vegetables, etc. at low concentrations. DLM has been considered as safe for humans at low concentrations. At present, its exposure has been increased due to restriction on the sale of organophosphate insecticides. Increasing use of DLM products arise the attention towards its toxicity. It has been demonstrated that DLM at high concentration cause apoptosis in the mammalian cells. However, the mechanism of DLM mediated apoptotic signaling pathways are still an open question to be explored. In the present investigation, various pathways by which DLM induces chaos to different normal cellular activities have been compiled. Possibilities of DLM induced other apoptotic signalling pathways have also been discussed which could be considered for the future studies for better understanding of its mechanism of toxicity. This review provides the detailed study of all the existing and possible apoptogenic signalling pathways induced by DLM which could be helpful for the development of various antidotes for its toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yonar, M. E. & Sakin, F. Amelirrative effect of lycopene on antioxidant status in cyprinuscarpio during pyrethroid deltamethrin exposure. Pest. Biochem. Physiol. 99, 226–231 (2011).

    Article  CAS  Google Scholar 

  2. Sondhia, S. & Dubey, R. P. Determination of terminal residues of butachlor and pendimethalin in onion. Pest. Res. J. 18, 85–86 (2006).

    CAS  Google Scholar 

  3. Sondhia, S. & Singhai, B. Persistence of sulfosulfuron under wheat cropping system. Bull. Environ. Cont. Toxicol. 80, 423–427 (2008).

    Article  CAS  Google Scholar 

  4. Laskowski, D. A. Physical and chemical properties of pyrethroids. Rev. Environ. Contam. Toxicol. 174, 49–170 (2002).

    CAS  PubMed  Google Scholar 

  5. Chen, S. Y. et al. An epidemiological study on occupational acute pyrethroid poisoning in cotton farmers. Br. J. Ind. Med. 48, 77–81 (1991).

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Gassner, B. et al. Topical application of synthetic pyrethroids to cattle as a source of persistent environmental contamination. J. Environ. Sci. Health B. 32, 723–739 (1997a).

    Article  Google Scholar 

  7. Gammon, D. W., Brown, M. A. & Casida, J. E. Two classes of pyrethroid action in the cockroach. Pestic. Biochem. Physiol. 15, 181–186 (1981).

    Article  CAS  Google Scholar 

  8. Gray, A. J. Pyrethroid structure-toxicity relationships in mammals. Neurotoxicol. 6, 127–138 (1985).

    CAS  Google Scholar 

  9. Verrschoyle, R. D. & Aldridge, W. N. Structure-activity relationships of some pyrethroids in rats. Arch. Toxicol. 45, 325–332 (1980).

    Article  Google Scholar 

  10. Ray, D. E. The contrasting actions of two pyrethroids (deltamethrin and cismethrin) in the rat. Neurobehav. Toxicol. Teratol. 4, 801–804 (1982).

    CAS  PubMed  Google Scholar 

  11. Miller, T. A. & Salgado, V. L. in The mode of action of pyrethroids on insects (ed Leahey, J. P.) 48–(Taylor and Francis, London, 1985).

  12. Salgado, V. L., Irving, S. N. & Miller, T. A. The importance of nerve terminal depolarisation in pyrethroid poisoning of insects. Pestic. Biochem. Physiol. 20, 169–182 (1983b).

    Article  CAS  Google Scholar 

  13. Salgado, V. L., Irving, S. N. & Miller, T. A. Depolarization of motor nerve terminals by pyrethroids in susceptible and kdr resistant house flies. Pestic. Biochem. Physiol. 20, 100–114 (1983b).

    Article  CAS  Google Scholar 

  14. Elliott, M. et al. Synthetic insecticide with a new order of activity. Nature 248, 710 (1974).

    Article  CAS  PubMed  Google Scholar 

  15. Environmental Health Criteria 97, http://www.inchem.org/documents/ehc/ehc/ehc97.htm (1990).

  16. Bradburry, S. P. & Coast, J. R. Comparative toxicology of the pyrethroid insecticides. Rev. Environ. Contam. Toxicol. 108, 134–177 (1989).

    Google Scholar 

  17. Maud, S. J., Hamer, M.. & Wariton, J. S. Aquatic ecotoxicology of the pyrethroid insecticide lamdacyhalothrin: consideration for higher-tier aquatic risk assessment. Pest Sci. 54, 408–417 (1998).

    Article  Google Scholar 

  18. Muccio, A. D., Pelosi, P. & Barbini, D. A. Selective extraction of oyrethroid pesticide residues from milk by solid-matrix dispersion. J. Chromatogr A. 765, 51–60 (1997).

    Article  PubMed  Google Scholar 

  19. Barlow, S. M., Sullivan, F. M. & Lines, J. Risk assessment of the use of deltamethrin on bednets for the prevention of malaria. Food Chem. Toxicol. 39, 407–422 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Chargui, I. et al. Oxidative stress, biochemical and histopathological alterations in the liver and kidney of female rats exposed to low doses of deltamethrin (DM): a molecular assessment. Biomed Environ. Sci. 25, 672–683 (2012).

    CAS  PubMed  Google Scholar 

  21. Muhammad, M., Hossain, J. & Richardson, R. Mechanism of pyrethroid pesticide-induced apoptosis: Role of Calpain and the ER stress pathway. Toxicol. Sci. 122, 512–525 (2011).

    Article  Google Scholar 

  22. Mestres, R. & Mestres, G. Deltamethrin: uses and environmental safety. Rev. Environ. Contam. Toxicol. 124, 1–18 (1992).

    CAS  PubMed  Google Scholar 

  23. Schettgen, T., Heudorf, U., Drexler, H. & Angerer, J. Pyrethroid exposure of the general population-is this due to diet. Toxicol. Lett. 134, 141–145 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Aldridge, W. N. An assessment of the toxicological properties of pyrethroids and their toxicity. CRC Rev. Toxicol. 21, 89–104 (1990).

    Article  CAS  Google Scholar 

  25. Vijverberg, H. P. M. & Van den Bercken, J. Neurotoxicological effects and the mode of action of pyrethroid insecticides. CRC Rev. Toxicol. 21, 105–126 (1990).

    Article  CAS  Google Scholar 

  26. Elliot, M. Properties and application of pyrethroids. Environ. Health Perspect. 14, 3–13 (1976).

    Article  Google Scholar 

  27. FAO/WHO, Pesticide residues in food-1998. Evaluations Part 2. Toxicological. 1999c Environmental (1998).

    Google Scholar 

  28. Depeng, L. et al. Alphamethrin impregnated bednets for malaria and mosquito control in China. Trans. R. Soc. Trop. Med. Hyg. 88, 625–628 (1994).

    Article  Google Scholar 

  29. Janakara, B. R. et al. Deltamethrin impregnated bednets against Anopheles minimus transmitted malaria in Asam, India. J. Trop. Med. Hyg. 98, 73–83 (1995).

    CAS  Google Scholar 

  30. MoyouSomo, R., Lehman, L. G., Wahmukalah, S. & Enyong, P. A. Deltamethrin impregnated bednets for the control of urban malaria in Kumba town, South-West province of Cameroon. J. Trop. Med. Hyg. 98, 319–324 (1995).

    CAS  Google Scholar 

  31. Enan, E., Pinkerton, K. E., Peake, J. & Matsumura, F. DLM induced thymus atrophy in male Balb/c mice. J. Biochem. Pharmacol. 51, 447–454 (1996).

    Article  CAS  Google Scholar 

  32. El-Gohary, M., Awara, W. M., Nassar, S. & Hawas, S. DLM induced testicular apoptosis in rats: the protective effect of nitric oxide synthase inhibitor. Toxicol. 132, 1–8 (1999).

    Article  CAS  Google Scholar 

  33. Wu, A. & Liu, Y. Apoptotic cell death in rat brain following deltamethrin treatment. Neurosci. Lett. 279, 85–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Kumar, A., Sasmal, D. & Sharma, N. Deltamethrin induced an apoptogenic signalling pathway in murine thymocytes: exploring the molecular mechanism. J. App. Toxicol. 34, 1303–1310 (2013).

    Article  Google Scholar 

  35. Norbury, C. J. & Hickson, I. D. Cellular responses to DNA damage. Annu. Rev. Pharmacol. Toxicol. 41, 367–401 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Budihardjo, I. et al. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, M. & Wang, J. Initiator caspases in apoptosis signaling pathways. Apoptosis 7, 313–319 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Stennicke, H. R. Pro-Procaspase-3 is a major physiologic target of caspase-8. J. Biol. Chem. 273, 27084–27090 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Mahajan, N. P. Bcl2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nature Biotech. 16, 547–552 (1998).

    Article  CAS  Google Scholar 

  40. Adams, J. M. & Cory, S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci. 26, 367–401 (2001).

    Article  Google Scholar 

  41. Ashkenazi, A. & Dixit, V. M. Apoptosis control by death and decoy receptors. Current Biochem. Sci. 26, 61–66 (2001).

    Article  Google Scholar 

  42. Curtin, J. F. & Cotter, T. G. Live and let die: regulatory mechanisms in Fas-mediated apoptosis. Cell Signal. 15, 983–992 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Lloyd, A. Caspase-8: an initiator of Fas-mediated apoptosis. Drug Discovery Today 3, 525–525 (1998).

    Article  Google Scholar 

  44. Garofalo, T. Association of the death-inducing signaling complex with microdomains after triggering through CD95/Fas. Evidence for caspase-8 ganglioside interaction in T cells. J. Biol. Chem. 278, 8309–8315 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Brune, B., Von Knethen, A. & Sandau, K. B. Nitric oxide and its role in apoptosis. European Journal of Pharmacol. 351, 261–272 (1998).

    Article  CAS  Google Scholar 

  46. Brune, B., von Knethen, A. & Sandau, K. B. Nitric oxide (NO): an effector of apoptosis. Cell Death and Diff. 6, 969–975 (1999).

    Article  CAS  Google Scholar 

  47. Li, T. et al. Effect of deltamethrin on the apoptosis and the expression of caspase-3 in rat neural cells. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 5, 371–374 (2004).

    Google Scholar 

  48. Wu, A., Long, L. & Yugu, L. DLM induces apoptotic cell death in cultured cerebral cortical neurons. Toxicol. App. Pharmacol. 187, 50–57 (2003).

    Article  CAS  Google Scholar 

  49. Hsu, S. S. & Chou, C. T. Deltamethrin-Induced [Ca2+] Rise and Death in HGB Human Glioblastoma Cells. Chin. J. Physiol. 55, 294–304 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Gupta, G., Chaitanya, R. K., Golla, M. & Karnati, R. Allethrin toxicity on human corneal epithelial cells involves mitochondrial pathway mediated apoptosis. Toxicology in vitro. 27, 2242–2248 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Berridge, M. J. Inositol trisphosphate and calcium signalling. Nature 361, 315–325 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Clapham, D. E. Calcium signalling. Cell 80, 259–268 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. McConkey, D. J. The role of calcium in the regulation of apoptosis. Scanning Micros. 10, 777–793 (1996).

    CAS  Google Scholar 

  54. Thomas, A. P., Bird, G. S., Hajnóczky, G., Robb-Gaspers, L. D. & Putney, J. W. Jr. Spatial and temporal aspects of cellular calcium signalling. FASEB J. 10, 1505–1517 (1996).

    CAS  PubMed  Google Scholar 

  55. Berridge, M. J. Elementary and global aspects of calcium signalling. J. Physiol. (Lond) 499, 292–306 (1997).

    Article  Google Scholar 

  56. Ichas, F. & Mazat, J. P. From calcium signalling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim. Biophys. Acta. 1366, 33–50 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Lemasters, J. J., Nieminen, A. L. & Qian, T. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta. 1366, 177–196 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Duchen, M. R. Contributions of mitochondria to animal physiology:from homeostatic sensor to calcium signalling and cell death. J. Physiol. (Lond) 516, 1–17 (1999).

    Article  CAS  Google Scholar 

  59. Verkhratsky, A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol. Rev. 85, 201–279 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Morishima, N. et al. An endoplasmic reticulum stressspecific caspase cascade in apoptosis. Cytochrome c independent activation of caspase-9 by caspase-12. J. Biol. Chem. 277, 34287–34294 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Narahashi, T. Neuronal ion channels as the target sites of insecticides. Pharmacol. Toxicol. 79, 1–14 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Vais, H. et al. Activation of Drosophila sodium channels promotes modification by deltamethrin. J. Gen. Physiol. 115, 305–318 (2000).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Elles, T. J. & Dubocovich, L. M. Pyrethroid insecticides evoke neurotransmitter release from rabbit striatal slices. JPET 246, 514–521 (1998).

    Google Scholar 

  64. Hildebrand, E. M., Mcrory, E. J., Snutch, P. T. & Stea, A. Mammalian voltage-gated calcium channels are potently blocked by the pyrethroid insecticide Allethrin. JPET 308, 805–813 (2004).

    Article  CAS  Google Scholar 

  65. Spencer, I. C. & Sham, S. J. Mechanism underlying the effects of the pyrethroid Tefluthrin on action potential duration in isolated Rat ventricular myocytes. JPET 315, 16–23 (2005).

    Article  CAS  Google Scholar 

  66. Tuzmen, N., Candan, N., Kaya, E. & Demiryas, N. Biochemical effects of chlorpyrifos and deltamethrin on altered antioxidative defense mechanisms and lipid peroxidation in rat liver. Cell Biochem. Funct. 26, 119–124 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Marks, D. B., Marks, A. D. & Smith, C. M. Oxygen metabolism and oxygen toxicity. in Basic Medical Biochemistry: A Clinical Approach (eds Velker, J.) 340–(Williams and Wilkins, Baltimore, 1996).

  68. Rehman, H. et al. The modulatory effect of DLM on antioxidants in mice. J. Elementol. Toxicol. 31, 371–377 (2006).

    Google Scholar 

  69. Yousef, M., Awad, T. & Mohamed, E. DLM-induced oxidative damage and biochemical alterations in rat and its attenuation by vitamin E. Toxicol. 227, 240–247 (2001).

    Article  Google Scholar 

  70. Aydin, B. Effects of thiacloprid, deltamethrin and their combination on oxidative stress in lymphoid organs, polymorphonuclear leukocytes and plasma of rats. Pesticide Biochem and Physiol. 100, 165–171 (2011).

    Article  CAS  Google Scholar 

  71. Ceyhun, S. B. et al. Deltamethrin attenuates antioxidant defense system and induces the expression of heat shock protein 70 in rainbow trout. Comparative Biochem. and Physiol. Part C 152, 215–223 (2010).

    Google Scholar 

  72. Nguyen, T., Sherratt, P. J. & Pickett, C. B. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu. Rev. Pharmacol. Toxicol. 43, 233–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Ishii, T., Itoh, K. & Yamamoto, M. Roles of Nrf2 in activation of antioxidant enzyme genes via antioxidant responsive elements. Methods Enzymol. 348, 182–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Ali, B. M., Liu, Y. G. & Shi, N. The effects of deltamethrin on HO activity and HO-1 protein expression in rat brain. Acta. Universitatis. Medicinae. Tongji. 29, 236–238 (2000).

    Google Scholar 

  75. Li, H. Y., Wu, Y. S. & Shi, N. Transcription factor Nrf2 activation by deltamethrin in PC 12 cells: Involvement of ROS. Toxicol. Lett. 171, 87–98 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Ensibi, C. et al. Effects of DLM on biometric parameters and liver biomarkers in common carp (Cyprinuscarpio L). Environ. Toxicol. Pharmacol. 36, 384–391 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Crumrine, R. C., Thomas, A. L. & Morgan, P. F. Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J. Cereb. Blood Flow Metab. 14, 887 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Gillardon, F., Wickert, H. & Zimmermann, M. Up regulation of bax and down regulation of bcl 2 is associated with kainite induced apoptosis in mouse brain. Neurosci. Lett. 192, 85 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Borovitskaya, A. E., Evtushenko, V. I. & Sabol, S. L. Gamma-radiation-induced cell death in fetal rat brain possesses molecular characteristics of apoptosis and is associated with specific messenger RNA elevations. Mol. Brain Res. 35, 19 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Hughes, P. E. et al. Excitotoxic lesion of rat brain with quinolinic acid induces expression of p53 messenger RNA and protein and p53 inducible genes bax and GADD 45 in brain areas showing DNA fragmentation. Neurosci. 74, 1143 (1996).

    Article  CAS  Google Scholar 

  81. White, F. A. et al. Widespread elimination of naturally occurring neuronal death in bax-deficient mice. J. Neurosci. 18, 1428 (1998).

    CAS  PubMed  Google Scholar 

  82. Xiang, H. et al. Bax involvement in p53-mediated neuronal cell death. J. Neurosci. 18, 1363 (1998).

    CAS  PubMed  Google Scholar 

  83. Miyashita, T., Krajewski, S. & Krajewska, M. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9, 1799 (1994).

    CAS  PubMed  Google Scholar 

  84. Oltvai, Z. N., Milliman, C. L. & Korsmeyer, S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, bax that accelerates programmed cell death. Cell. 74, 609–619 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Vector control for malaria and other mosquito-borne diseases, http://whqlibdoc.who.int/trs/WHO_TRS_857.pdf?ua=1 (1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelima Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Sasmal, D. & Sharma, N. An insight into deltamethrin induced apoptotic calcium, p53 and oxidative stress signalling pathways. Toxicol. Environ. Health Sci. 7, 25–34 (2015). https://doi.org/10.1007/s13530-015-0217-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-015-0217-1

Keywords

Navigation