Skip to main content
Log in

Photodynamic inactivation of chlorin e6 with halogen light against dermatophytes

  • Research article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Photodynamic inactivation (PDI) combines a photosensitizer with light in the presence of oxygen, producing reactive oxygen species which will inactivate pathogens. The most common dermatophyte, named T. mentagrophytes, was known to cause various skin infections in human, such as dermatophytosis. In this study, the antifungal activity of chlorin e6-based PDI with halogen light for photodynamic inactivation against T. mentagrophytes was measured. We report for the first time that the chlorin e6-based PDI exhibited a significant antifungal activity against T. mentagrophytes. The use of chlorin e6 as an antifungal photosensitizer for PDI represents a prominent alternative method for treating fungal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donnelly, R. F., McCarron, P. A. & Tuney, M. M. Antifungal photodynamic therapy. Microbiol. Res. 163, 1–12 (2008).

    Article  PubMed  CAS  Google Scholar 

  2. Kessel, D., Vicente, M. G. & Reiners J. J. Jr. Initiation of apoptosis and autophagy by photodynamic therapy. Lasers Surg. Med. 38, 482–488 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen, B. et al. The tumor affinity of chlorin e6 and its sonodynamic effects on non-small cell lung cancer. Ultrason Sonochem. 20, 667–673 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. Isakau, H. A. et al. Toward understanding the high PDT efficacy of chlorin e6-polyvinylpyrrolidone formulations: Photophysical and molecular aspects of photosensitizer-polymer interaction in vitro. J. Photochem. Photobiol. B. 92, 165–174 (2008).

    Article  PubMed  CAS  Google Scholar 

  5. Alexandra B. O. & Harold S. F. Dye sensitizers for photodynamic therapy. Materials. 6, 817–840 (2013).

    Article  Google Scholar 

  6. Demidova, T. N. & Hamblin, M. R. Photodynamic therapy targeted to pathogens. Int. J. Immunopathol. Pharmacol. 17, 245–254 (2004).

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Hamblin, M. R. & Hasan, T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci. 3, 436–450 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Bertoloni, G., Reddi, E., Gatta, M., Burlini, C. & Jori, G. Factors influencing the haematoporphyrin-sensitized photoinactivation of Candida albicans. J. Gen. Microbiol. 135, 957–966 (1989).

    PubMed  CAS  Google Scholar 

  9. Espinel-Ingroff, A. Novel antifungal agents, targets or therapeutic strategies for the treatment of invasive fungal disease: a review of the literature (2005–2009). Rev. Iberoam. Micol. 26, 15–22 (2009).

    Article  PubMed  Google Scholar 

  10. Groll, A. H. & Tragiannidis, A. Recent advances in antifungal prevention and treatment. Semin. Hematol. 46, 212–229 (2009).

    CAS  Google Scholar 

  11. Lee, M. H., Lee, K. B., Oh, S. M., Lee, B. H. & Chee, H. Y. Antifungal activities of dieckol isolated from the marine brown alga Ecklonia cava against Trichophyton rubrum. J. Korean Soc. Appl. Biol. Chem. 53, 504–507 (2010).

    Article  CAS  Google Scholar 

  12. Chinelli, P. A., Sofiatti Ade, A., Nunes, R. S. & Martin, J. E. Dermatophyte agents in the city of São Plaulo, from 1992 to 2002. Rev. Inst. Med. Trop. Sao. Paulo. 45, 259–263 (2003).

    Article  PubMed  Google Scholar 

  13. Weitzman, I. & Summerbell, R. C. The dermatophytes. Clin. Microbiol. Rev. 8, 240–259 (1995).

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Summerbell, R. C. Epidemiology and ecology of onychomycosis. Dermatology. 194, 32–36 (1997).

    Article  PubMed  Google Scholar 

  15. Yu, A. R. et al. The antifungal activity of bee venom against dermatophytes. J. Appl. Biol. Chem. 55, 7–11 (2012).

    Article  CAS  Google Scholar 

  16. Ramage, G., Mowat, E., Jones, B., Williams, C. & Lopez-Ribot, J. Our current understanding of fungal biofilms. Crit. Rev. Microbiol. 35, 340–355 (2009).

    Article  PubMed  CAS  Google Scholar 

  17. Pires, R. H. et al. Anticandidal efficacy of cinnamon oil against planktonic and biofilm cultures of Candida parapsilosis and Candida orthopsilosis. Mycopathologia. 172, 453–464 (2011).

    Article  PubMed  CAS  Google Scholar 

  18. Pires, R. H., Santis, J. M., Zaja, J. E., Martins, C. H. & Mendes-Giannini, M. J. Candida parapsilosis complex water isolates from a haemodiaysis unit: biofilm production and in vitro evaluation of the use of clinical antifungals. Mem. Inst. Oswaldo Cruz. 106, 646–654 (2011).

    Article  PubMed  CAS  Google Scholar 

  19. Martins, M., Henriques, M., Lopez-Ribot, J. L. & Oliveira, R. Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses. 55, 80–85 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Sardi, J. C., Scorzoni, L., Bernardi, T., Fusco-Almeida, A. M. & Mendes Giannini, M. J. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol. 62, 10–24 (2013).

    Article  PubMed  CAS  Google Scholar 

  21. Ajesh, K. & Sreejith, K. Cryptococcus laurentii biofilms: structure, development and antifungal drug resistance. Mycopathologia. 174, 409–419 (2012).

    Article  PubMed  CAS  Google Scholar 

  22. Bojsen, R. K., Andersen, K. S. & Regenberg, B. Saccharomyces cerevisiae — a model to uncover molecular mechanisms for yeast biofilm biology. FEMS Immunol. Med. Microbiol. 65, 169–182 (2012).

    Article  PubMed  CAS  Google Scholar 

  23. Muszkieta, L. et al. Investigation of Aspergillus fumigates bioflim formation by various “omics” approaches. Front Microbiol. 4, 13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Costa-Orlandi, C. B., Sardi, J. C., Santos, C. T., Fusco-Almeida, A. M. & Mendes-Giannini, M. J. In vitro characterization of Trichophyton rubrum and T. mentagrophytes biofilms. Biofouling. 30, 719–727 (2014).

    Article  PubMed  CAS  Google Scholar 

  25. Vlassova, N., Han, A., Zenilman, J. M., James, G. & Lazarus, G. S. New horizons for cutanious microbiology: the role of biofilms in dermatological disease. Br. J. Dermatol. 165, 751–759 (2011).

    Article  PubMed  CAS  Google Scholar 

  26. Gupta, A. K. & Del Rosso, J. Q. An evaluation of intermittent therapies used to treat onychomycosis and other dermatomycoses with the oral antifungal agents. Int. J. Dermatol. 39, 401–411 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. Hainer, B. L. Dermatophyte infections. Am. Fam. Physician. 67, 101–108 (2003).

    PubMed  Google Scholar 

  28. Nair, M. K. et al. Antibacterial effect of caprylic acid and monocaprylin on major bacterial mastitis pathogens. J. Dairy Sci. 88, 3488–3495 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. Pitkälä, A., Haveri, M., Pyörälä, S., Myllys, V. & Honkanen-Buzalski, T. Bovine mastitis in Finland 2001- pervalence, distribution of bacteria, and antimicrobial resistance. J. Dairy Sci. 87, 2433–2441 (2004).

    Article  PubMed  Google Scholar 

  30. Pereira Gonzales, F. & Maisch, T. Photodynamic inactivation for controlling Candida albicans infections. Fungal. Biol. 116, 1–10 (2012).

    Article  PubMed  Google Scholar 

  31. Foote, C. S. Mechanisms of photosensitized oxidation. There are several different types of photosensitized oxidation which may be important in biological systems. Science. 162, 963–970 (1968).

    Article  PubMed  CAS  Google Scholar 

  32. Foote, C. S. Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 54, 659 (1991).

    Article  PubMed  CAS  Google Scholar 

  33. Roberts, D. T., Taylor, W. D. & Boyle, J. Guidelines for treatment of onychomycosis. Br. J. Dermatol. 148, 402–410 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. Evans, E. G. The rationale for combination therapy. Br. J. Drmatol. 145, 9–13 (2001).

    Article  Google Scholar 

  35. Sigurgeirsson, B., Paul, C., Curran, D. & Evans, E. G. Prognostic factors of mycological cure following treatment of onychomycosis with oral antifungal agents. Br. J. Dermatol. 147, 1241–1243 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. da Silva Barros, M. E., de Assis Santos, D. & Hamdan, J. S. Evaluation of susceptibility of Trichophyton mentagrophytes and Trichophyton rubrum clinical isolates to antifungal drugs using a modified CLSI microdilution method (M38-A). J. Med. Microbiol. 56, 514–518 (2007).

    Article  PubMed  Google Scholar 

  37. Santos, D. A., Barros, M. E. & Hamdan, J. S. Establishing a method of inoculum preparation for susceptibility testing of Trichophyton rubrum and Trichophyton mentagrophytes. J. Clin. Microbiol. 44, 98–101 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-Young Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JH., Han, CS., Chun, SN. et al. Photodynamic inactivation of chlorin e6 with halogen light against dermatophytes. Toxicol. Environ. Health Sci. 6, 170–175 (2014). https://doi.org/10.1007/s13530-014-0202-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-014-0202-0

Keywords

Navigation