Skip to main content
Log in

Scientific contestations over “toxic trespass”: health and regulatory implications of chemical biomonitoring

  • Published:
Journal of Environmental Studies and Sciences Aims and scope Submit manuscript

Abstract

Biomonitoring has chronicled hundreds of synthetic chemicals in human bodies. With the proliferation of biomonitoring studies from diverse stakeholders comes the need to better understand the public health consequences of synthetic chemical exposures. Fundamental disagreements among scientific experts as to the nature and purpose of biomonitoring data guide our investigation in this paper. We examine interpretations of biomonitoring evidence through interviews with 42 expert scientists from industry, environmental health and justice movement organizations (EHJM), academia, and regulatory agencies and through participant observation in scientific meetings where biomonitoring evidence is under debate. Both social movements and industry stakeholders frame the meaning of scientific data in ways that advance their own interests. EHJM scientists argue that biomonitoring data demonstrates involuntary “toxic trespass” and underscores a policy failure that allows for the pervasive use of untested chemicals. Industry scientists seek to subsume biomonitoring data under existing regulatory risk assessment paradigms. Our analysis reveals one area of convergence (validity of Centers for Disease Control surveillance data) and seven areas of contestation regarding the scientific, public health, and policy implications of biomonitoring evidence, among regulatory, industry, and EHJM scientists including: chemical presence in bodies, biological mechanisms of health impact, use of biomonitoring equivalents, limits of targeted biomonitoring, limits of detection, policy influence of advocacy biomonitoring, and relevance of biomonitoring to motivate policy change. These areas of scientific contestation provide insight into the persistent challenges of regulating chemicals even in the midst of mounting evidence of widespread exposure to multiple compounds with implications for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • 3M (2014) 3M’s phase out and new technologies. http://solutions.3m.com/wps/portal/3M/en_US/PFOS/PFOA/Information/phase-out-technologies/. Accessed 27 Jul 2010

  • Adams C, Brown P, Morello-Frosch R et al (2011) Disentangling the exposure experience the roles of community context and report-back of environmental exposure data. J Health Soc Behav 52:180–196. doi:10.1177/0022146510395593

    Article  Google Scholar 

  • American Chemistry Council (2014) Biomonitoring Equivalents: a valuable scientific tool for making better chemical safety decisions. http://blog.americanchemistry.com/2014/07/biomonitoring-equivalents-a-valuable-scientific-tool-for-making-better-chemical-safety-decisions/. Accessed 4 Sep 2014

  • Aylward LL, Green E, Porta M et al (2014) Population variation in biomonitoring data for persistent organic pollutants (POPs): an examination of multiple population-based datasets for application to Australian pooled biomonitoring data. Environ Int 68:127–138. doi:10.1016/j.envint.2014.03.026

    Article  CAS  Google Scholar 

  • Bahadori T, Phillips RD, Money CD et al (2007) Making sense of human biomonitoring data: findings and recommendations of a workshop. J Expo Sci Environ Epidemiol 17:308–313. doi:10.1038/sj.jes.7500581

    Article  Google Scholar 

  • Beck U (1992) Risk society: towards a new modernity. SAGE

  • Becker M, Edwards S, Massey RI (2010) Toxic chemicals in toys and children’s products: limitations of current responses and recommendations for government and industry. Environ Sci Technol 44:7986–7991. doi:10.1021/es1009407

    Article  CAS  Google Scholar 

  • Benford RD, Snow DA (2000) Framing processes and social movements: an overview and assessment. Annu Rev Sociol 26:611–639. doi:10.1146/annurev.soc.26.1.611

    Article  Google Scholar 

  • Birnbaum LS, Jung P (2011) From endocrine disruptors to nanomaterials: advancing our understanding of environmental health to protect public health. Health Aff (Millwood) 30:814–822. doi:10.1377/hlthaff.2010.1225

    Article  Google Scholar 

  • Brody JG, Morello-Frosch R, Brown P et al (2007a) Is it safe?: New ethics for reporting personal exposures to environmental chemicals. Am J Public Health 97:1547–1554. doi:10.2105/AJPH.2006.094813

    Article  Google Scholar 

  • Brody JG, Morello-Frosch R, Brown P et al (2007b) Improving disclosure and consent. Am J Public Health 97:1547–1554. doi:10.2105/AJPH.2006.094813

    Article  Google Scholar 

  • Brown P (2013) Toxic exposures: contested illnesses and the environmental health movement. Columbia University Press

  • Brown P, Zavestoski S (2004) Social movements in health: an introduction. Sociol Health Illn 26:679–694. doi:10.1111/j.0141-9889.2004.00413.x

    Article  Google Scholar 

  • Calafat AM, Ye X, Wong L-Y et al (2008) Exposure of the U.S. population to bisphenol a and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect 116:39–44. doi:10.1289/ehp.10753

    Article  CAS  Google Scholar 

  • CDC (2013) Fourth report on human exposure to environmental chemicals. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  • Centers for Disease Control and Prevention, CDC (2013) Blood lead levels in children aged 1–5 years, United States, 1999–2010. Morb Mortal Wkly Rep 63:245–248

    Google Scholar 

  • Corburn J (2007) Community knowledge in environmental health science: co-producing policy expertise. Environ Sci Pol 10:150–161. doi:10.1016/j.envsci.2006.09.004

    Article  Google Scholar 

  • Cranor CF (2011) Legally poisoned: how the law puts us at risk from toxicants. Harvard University Press, Cambridge

    Google Scholar 

  • Dhillon S, Kostrzewski A (2006) Clinical pharmacokinetics, first. Pharmaceutical Press, United Kingdom

    Google Scholar 

  • Egeghy PP, Judson R, Gangwal S et al (2012) The exposure data landscape for manufactured chemicals. Sci Total Environ 414:159–166. doi:10.1016/j.scitotenv.2011.10.046

    Article  CAS  Google Scholar 

  • Environmental Working Group (2005) Body burden: the pollution in newborns

  • Fei C, McLaughlin JK, Tarone RE, Olsen J (2008) Fetal growth indicators and perfluorinated chemicals: a study in the Danish National Birth Cohort. Am J Epidemiol 168:66–72. doi:10.1093/aje/kwn095

    Article  Google Scholar 

  • U.S. Government Accountability Office (2009) Biomonitoring: EPA needs to coordinate its research strategy and clarify its authority to obtain biomonitoring data. http://www.gao.gov/products/GAO-09-353. Accessed 17 Sep 2014

  • Harley KG, Chevrier J, Aguilar Schall R et al (2011) Association of prenatal exposure to polybrominated diphenyl ethers and infant birth weight. Am J Epidemiol 174:885–892. doi:10.1093/aje/kwr212

    Article  Google Scholar 

  • Hays SM, Aylward LL, LaKind JS et al (2008) Guidelines for the derivation of biomonitoring equivalents: report from the biomonitoring equivalents expert workshop. Regul Toxicol Pharmacol RTP 51:S4–15. doi:10.1016/j.yrtph.2008.05.004

    Article  Google Scholar 

  • Jackson R, Locke P, Pirkle J et al (2002) Will biomonitoring change how we regulate toxic chemicals? J Law Med Ethics 30:177–183

    Google Scholar 

  • Jasanoff S (1987) Contested boundaries in policy-relevant science. Soc Stud Sci 17:195–230

    Article  Google Scholar 

  • Jasanoff S (1990) American exceptionalism and the political acknowledgment of risk. Daedalus 119:61–81

    Google Scholar 

  • Jasanoff S (1993) Procedural choices in regulatory science. Risk Issues Health Saf 4:143

    Google Scholar 

  • Jasanoff S (1999) The songlines of risk. Environ Values 8:135–152

    Article  Google Scholar 

  • Jasanoff S (2009) The fifth branch: science advisers as policymakers. Harvard University Press

  • Judson R, Richard A, Dix DJ et al (2009) The toxicity data landscape for environmental chemicals. Environ Health Perspect 117:685–695. doi:10.1289/ehp.0800168

    Article  CAS  Google Scholar 

  • Kodavanti PRS, Coburn CG, Moser VC et al (2010) Developmental exposure to a commercial PBDE mixture, DE-71: neurobehavioral, hormonal, and reproductive effects. Toxicol Sci Off J Soc Toxicol 116:297–312. doi:10.1093/toxsci/kfq105

    Article  CAS  Google Scholar 

  • Krimsky S (2000) Hormonal chaos: the scientific and social origins of the environmental endocrine hypothesis. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • LaKind JS, Aylward LL, Brunk C et al (2008) Guidelines for the communication of biomonitoring equivalents: report from the biomonitoring equivalents expert workshop. Regul Toxicol Pharmacol 51:S16–S26. doi:10.1016/j.yrtph.2008.05.007

    Article  CAS  Google Scholar 

  • Lautenberg F (2011) Lautenberg introduces “Safe Chemicals Act of 2011.”

  • MacKendrick NA (2010) Media framing of body burdens: precautionary consumption and the individualization of risk*. Sociol Inq 80:126–149. doi:10.1111/j.1475-682X.2009.00319.x

    Article  Google Scholar 

  • McCormick S (2009) Mobilizing science: movements, participation, and the remaking of knowledge. Temple University Press, Philadelphia

    Google Scholar 

  • Morello-Frosch R, Brody JG, Brown P et al (2009) Toxic ignorance and right-to-know in biomonitoring results communication: a survey of scientists and study participants. Environ Health 8:6. doi:10.1186/1476-069X-8-6

    Article  Google Scholar 

  • Myers NJ, Raffensperger C (2006) Precautionary tools for reshaping environmental policy. MIT Press, Cambridge

    Google Scholar 

  • Myers JP, Zoeller RT, vom Saal FS (2009) A clash of old and new scientific concepts in toxicity, with important implications for public health. Environ Health Perspect 117(11):1652–1655

  • Namieśnik J (2000) Trends in environmental analytics and monitoring. Crit Rev Anal Chem 30:221–269. doi:10.1080/10408340091164243

    Article  Google Scholar 

  • National Center for Environmental Health (2012) Low level lead exposure harms children: a renewed call for primary prevention. Centers for Disease Control and Prevention

  • National Research Council (2008) Phthalates and cumulative risk assessment the task ahead. http://www.nap.edu/openbook.php?record_id=12528. Accessed 9 Sep 2014

  • National Research Council (2006) Health risks from dioxin and related compounds: evaluation of the EPA reassessment. The National Academies Press, Washington

    Google Scholar 

  • National Research Council (2009) Science and decisions: advancing risk assessment. The National Academies Press, Washington

    Google Scholar 

  • Needham LL (2008) Introduction to biomonitoring. J Chem Health Saf 15:5–7. doi:10.1016/j.jchas.2008.06.002

    Article  CAS  Google Scholar 

  • Needleman H (2004) Lead poisoning. Annu Rev Med 55:209–222. doi:10.1146/annurev.med.55.091902.103653

    Article  CAS  Google Scholar 

  • O’Brien M (2000) Making better environmental decisions: an alternative to risk assessment, 1st edition. The MIT Press

  • OEHHA (2011) Biomonitoring California workshop understanding and interpreting biomonitoring results. Biomonitoring Calif. Workshop Underst. Interpret. Biomonitoring Results

  • Oreskes N, Conway EM (2010) Merchants of doubt: how a handful of scientists obscured the truth on issues from tobacco smoke to global warming. Bloomsbury Publishing USA

  • Ottinger G, Cohen B (2012) Environmentally just transformations of expert cultures: toward the theory and practice of a renewed science and engineering. Environ Justice 5:158–163. doi:10.1089/env.2010.0032

    Article  Google Scholar 

  • Parthasarathy S (2010) Breaking the expertise barrier: understanding activist strategies in science and technology policy domains. Sci Public Policy 37:355–367

    Article  Google Scholar 

  • Porta M (2012) Human contamination by environmental chemical pollutants: can we assess it more properly? Prev Med 55:560–562. doi:10.1016/j.ypmed.2012.09.020

    Article  Google Scholar 

  • Porta M, Puigdomènech E, Ballester F et al (2008) Monitoring concentrations of persistent organic pollutants in the general population: the international experience. Environ Int 34:546–561. doi:10.1016/j.envint.2007.10.004

    Article  CAS  Google Scholar 

  • Rappaport SM (2011) Implications of the exposome for exposure science. J Expo Sci Environ Epidemiol 21:5–9. doi:10.1038/jes.2010.50

    Article  CAS  Google Scholar 

  • Schafer K (2004) Chemical trespass: pesticides in our bodies and corporate accountability. Pesticide Action Network North America

  • Schecter A, Papke O, Tung KC et al (2005) Polybrominated diphenyl ether flame retardants in the U.S. population: current levels, temporal trends, and comparison with dioxins, dibenzofurans, and polychlorinated biphenyls. J Occup Environ Med 47:199–211. doi:10.1097/01.jom.0000158704.27536.d2

    Article  CAS  Google Scholar 

  • Schettler T (2006) Human exposure to phthalates via consumer products. Int J Androl 29:134–139. doi:10.1111/j.1365-2605.2005.00567.x

    Article  CAS  Google Scholar 

  • Scruggs CE, Ortolano L, Schwarzman MR, Wilson MP (2014) The role of chemical policy in improving supply chain knowledge and product safety. J Environ Stud Sci 4:132–141. doi:10.1007/s13412-013-0158-4

    Article  Google Scholar 

  • Sexton K, Needham L, Pirkle J (2004) Human biomonitoring of environmental chemicals. Am Sci 92:38. doi:10.1511/2004.1.38

    Article  Google Scholar 

  • Snow DA, Rochford EB, Worden SK, Benford RD (1986) Frame alignment processes, micromobilization, and movement participation. Am Sociol Rev 51:464. doi:10.2307/2095581

    Article  Google Scholar 

  • Stein J, Schettler T, Wallinga D, Valenti M (2002) In harm’s way: toxic threats to child development. J Dev Behav Pediatr JDBP 23:S13–22

    Article  Google Scholar 

  • Vandenberg LN, Colborn T, Hayes TB et al (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33:378–455. doi:10.1210/er.2011-1050

    Article  CAS  Google Scholar 

  • Viñas R, Watson CS (2013) Bisphenol S disrupts estradiol-induced nongenomic signaling in a rat pituitary cell line: effects on cell functions. Environ Health Perspect 121:352–358. doi:10.1289/ehp.1205826

    Article  Google Scholar 

  • Vogel SA (2008) From “the dose makes the poison” to “the timing makes the poison”: conceptualizing risk in the synthetic age. Environ Hist 13:667–673. doi:10.2307/25473294

    Google Scholar 

  • Vogel SA (2009) The politics of plastics: the making and unmaking of bisphenol a ‘safety’. Am J Publ Health 99(S3):S559–S566

  • Washburn R (2009) Measuring the chemicals within: the social terrain of human biomonitoring in the United States.

  • Washino N, Saijo Y, Sasaki S et al (2009) Correlations between prenatal exposure to perfluorinated chemicals and reduced fetal growth. Environ Health Perspect 117:660–667. doi:10.1289/ehp.11681

    Article  CAS  Google Scholar 

  • Wigley DC, Shrader-Frechette KS (1996) Environmental racism and biased methods of risk assessment. Risk Health Saf Environ 7:55

    Google Scholar 

  • Wild CP (2012) The exposome: from concept to utility. Int J Epidemiol 41:24–32. doi:10.1093/ije/dyr236

    Article  Google Scholar 

  • Wilson MP, Schwarzman MR (2009) Toward a new U.S. chemicals policy: rebuilding the foundation to advance new science, green chemistry, and environmental health. Environ Health Perspect 117:1202–1209. doi:10.1289/ehp.0800404

    Article  CAS  Google Scholar 

  • Woodruff TJ, Burke TA, Zeise L (2011a) The need for better public health decisions on chemicals released into our environment. Health Aff (Millwood) 30:957–967. doi:10.1377/hlthaff.2011.0194

    Article  Google Scholar 

  • Woodruff TJ, Zota AR, Schwartz JM (2011b) Environmental chemicals in pregnant women in the United States: NHANES 2003-2004. Environ Health Perspect 119:878–885. doi:10.1289/ehp.1002727

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation Award [# 0822724], a National Science Foundation Graduate Research Fellowship, and this work was supported by the National Institute of Environmental Health Sciences (R01ES017514). Thank you to Dr. Phil Brown and the Social Science Environmental Health Research Institute at Northeastern University for valuable feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavna Shamasunder.

Appendix

Appendix

Table 2 Scientific meetings attended (see “Methods”)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamasunder, B., Morello-Frosch, R. Scientific contestations over “toxic trespass”: health and regulatory implications of chemical biomonitoring. J Environ Stud Sci 6, 556–568 (2016). https://doi.org/10.1007/s13412-015-0233-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13412-015-0233-0

Keywords

Navigation