Skip to main content

Advertisement

Log in

Current advances in the utilization of nanotechnology for the diagnosis and treatment of diabetes

  • Review Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Diabetes is a prevalent disease throughout the world, and the incidence of diabetes is continuously rising. Researchers are constantly searching for advanced technologies for the diagnosis and treatment of diabetes. Nanotechnology is in the forefront of technologies that are being evaluated as an important tool that may serve as reliable methodology in the early diagnosis and treatment of diabetes. Experts in the nanotechnology researcher area are trying to develop novel glucose detection methods and newer delivery methods for insulin and other therapeutics. There has been progress in glucose sensing and insulin delivery; however, this is still at its early development stage. While nanotechnology has been employed in the diagnosis and treatment of a variety of diseases, the present review provides a brief update of the current progress in the utilization of nanotechnology for the diagnosis and treatment of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract [Internet] Elsevier Ireland Ltd. 2011;94:311–21. doi:10.1016/j.diabres.2011.10.029.

    Article  Google Scholar 

  2. DiSanto RM, Subramanian V, Gu Z. Recent advances in nanotechnology for diabetes treatment. WILEY Interdiscip Rev NANOBIOTECHNOLOGY 111 RIVER ST, HOBOKEN 07030–5774 NJ USA: WILEY-BLACKWELL. 2015;7:548–64.

    Article  CAS  Google Scholar 

  3. American Association Diabetes. Classification and diagnosis of diabetes. Diabetes Care [Internet]. 2016;39:S13–22. Available from: http://care.diabetesjournals.org/cgi/doi/10.2337/dc15-S005

    Article  Google Scholar 

  4. Daneman D. Type 1 diabetes. Lancet Elsevier. 2006;367:847–58.

    Article  CAS  Google Scholar 

  5. Donath MY, Størling J, Maedler K, Mandrup-Poulsen T. Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J Mol Med (Berl) [Internet]. 2003;81:455–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12879149

    Article  CAS  Google Scholar 

  6. Mellitus D. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2005;28:S37.

    Article  Google Scholar 

  7. Keen H. The Diabetes Control and Complications Trial (DCCT). Health Trends. 1994;26:41–3.

    CAS  PubMed  Google Scholar 

  8. Clarke PM, Gray AM, Briggs A, Farmer AJ, Fenn P, Stevens RJ, et al. A model to estimate the lifetime health outcomes of patients with type 2 diabetes: the United Kingdom prospective diabetes study (UKPDS) outcomes model (UKPDS no. 68). Diabetologia. 2004;47:1747–59.

    Article  CAS  PubMed  Google Scholar 

  9. Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med [Internet] Massachusetts Medical Society. 1993;328:1676–85. doi:10.1056/NEJM199306103282306.

    Article  CAS  Google Scholar 

  10. Krolewski AS, Warram JH, Rand LI, Christlieb AR, Busick EJ, Kahn CR. Risk of proliferative diabetic retinopathy in juvenile-onset type I diabetes: a 40-yr follow-up study. Diabetes Care [Internet]. 1986;9:443–52. Available from: http://care.diabetesjournals.org/content/9/5/443.abstract

    Article  CAS  Google Scholar 

  11. Ballard DJ, Humphrey LL, Melton LJ, Frohnert PP, Chu C-P, O’Fallon WM, et al. Epidemiology of persistent proteinuria in type II diabetes mellitus: population-based study in Rochester, Minnesota. Diabetes [Internet]. 1988;37:405–12. Available from: http://diabetes.diabetesjournals.org/content/37/4/405.abstract

    Article  CAS  Google Scholar 

  12. Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T. Diabetic nephropathy in type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia [Internet]. 25:496–501. doi:10.1007/BF00284458.

  13. Devadasu VR, Bhardwaj V, Kumar MNVR. Can controversial nanotechnology promise drug delivery? Chem. Rev. 2013;1686–735.

  14. Schäfer-Korting M, Mehnert W, Korting H-C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv. Drug Deliv. Rev. Elsevier. 2007;59:427–43.

    Article  Google Scholar 

  15. Fangueiro JF, Silva AM, Garcia ML, Souto EB. Current nanotechnology approaches for the treatment and management of diabetic retinopathy. Eur J Pharm Biopharm [Internet] Elsevier BV. 2015;95:307–22. doi:10.1016/j.ejpb.2014.12.023.

    Article  CAS  Google Scholar 

  16. Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release. Elsevier. 2011;156:128–45.

    Article  CAS  Google Scholar 

  17. Azarmi S, Roa WH, Löbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv. Drug Deliv. Rev. Elsevier. 2008;60:863–75.

    Article  CAS  Google Scholar 

  18. Sahni JK, Doggui S, Ali J, Baboota S, Dao L, Ramassamy C. Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J. Control. release. Elsevier. 2011;152:208–31.

    Article  CAS  Google Scholar 

  19. Marta T, Luca S, Serena M, Luisa F, Fabio C. What is the role of nanotechnology in diagnosis and treatment of metastatic breast cancer? Promising Scenarios for the Near Future. J. Nanomater. Hindawi Publishing Corporation; 2016;2016.

  20. Karimi M, Zare H, Bakhshian Nik A, Yazdani N, Hamrang M, Mohamed E, et al. Nanotechnology in diagnosis and treatment of coronary artery disease. Nanomedicine [Internet] Future Medicine. 2016:11, 513–530. doi:10.2217/nnm.16.3.

  21. Adler-Moore J. AmBisome targeting to fungal infections. Bone Marrow Transplant. 1993;14:S3–7.

    Google Scholar 

  22. O’brien MER, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol Eur Soc Med Oncology. 2004;15:440–9.

    Article  Google Scholar 

  23. Wu Y, Loper A, Landis E, Hettrick L, Novak L, Lynn K, et al. The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int. J. Pharm. Elsevier. 2004;285:135–46.

    Article  CAS  Google Scholar 

  24. Kaneda Y. Virosomes: evolution of the liposome as a targeted drug delivery system. Adv. Drug Deliv. Rev. Elsevier. 2000;43:197–205.

    Article  CAS  Google Scholar 

  25. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. release. Elsevier. 2000;65:271–84.

    Article  CAS  Google Scholar 

  26. Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA. Emerging nanopharmaceuticals. Nanomedicine Nanotechnology, Biol Med Elsevier. 2008;4:273–82.

    Article  CAS  Google Scholar 

  27. Tamada JA, Garg S, Jovanovic L, Pitzer KR, Fermi S, Potts RO, et al. Noninvasive glucose monitoring: comprehensive clinical results. Jama American Medical Association. 1999;282:1839–44.

    Article  CAS  Google Scholar 

  28. Rodbard D. Continuous glucose monitoring: a review of successes, challenges, and opportunities. Diabetes Technol. Ther. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA; 2016;18:S2–3.

  29. Wang H-C, Lee A-R. Recent developments in blood glucose sensors. J. Food Drug Anal. [Internet]. Elsevier Ltd. 2015;23:191–200. Available from: http://www.sciencedirect.com/science/article/pii/S1021949815000174

    CAS  Google Scholar 

  30. Cash KJ, Clark HA. Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med [Internet] Elsevier Ltd. 2010;16:584–93c. doi:10.1016/j.molmed.2010.08.002.

    Article  CAS  Google Scholar 

  31. Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP. Toward a glucose biosensor based on surface-enhanced Raman scattering. J Am Chem Soc ACS Publications. 2003;125:588–93.

    Article  CAS  Google Scholar 

  32. Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov [Internet] Nature Publishing Group. 2015;14:45–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25430866

    Article  CAS  Google Scholar 

  33. Scognamiglio V. Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens. Bioelectron. Elsevier. 2013;47:12–25.

    Article  CAS  Google Scholar 

  34. Ansari SG, Ansari ZA, Wahab R, Kim YS, Khang G, Shin HS. Glucose sensor based on nano-baskets of tin oxide templated in porous alumina by plasma enhanced CVD. Biosens Bioelectron. 2008;23:1838–42.

    Article  CAS  PubMed  Google Scholar 

  35. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L. Glucose oxidase—an overview. Biotechnol Adv [Internet]. 2009;27:489–501. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19374943

    Article  CAS  Google Scholar 

  36. Ricci F, Moscone D, Tuta CS, Palleschi G, Amine A, Poscia A, et al. Novel planar glucose biosensors for continuous monitoring use. Biosens Bioelectron 2005;1993–2000.

  37. Senthamizhan A, Balusamy B, Uyar T. Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem. 2015.

  38. Toghill KE, Compton RG. Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci. 2010;5:1246–301.

    CAS  Google Scholar 

  39. Tian K, Prestgard M, Tiwari A. A review of recent advances in nonenzymatic glucose sensors. Mater Sci Eng C. 2014; 100–18.

  40. Vaddiraju S, Burgess DJ, Tomazos I, Jain FC, Papadimitrakopoulos F. Technologies for continuous glucose monitoring: current problems and future promises. J. Diabetes Sci. Technol. [Internet]. 2010;4:1540–62. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3005068&tool=pmcentrez&rendertype=abstract

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS. Fluorescence-based glucose sensors. Biosens Bioelectron. 2005;2555–65.

  42. Klonoff DC. Overview of fluorescence glucose sensing: a technology with a bright future. J Diabetes Sci Technol [Internet]. 2012;6:1242–50. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3570863&tool=pmcentrez&rendertype=abstract

    Article  Google Scholar 

  43. Bull SD, Davidson MG, Van Den Elsen JMH, Fossey JS, Jenkins ATA, Jiang YB, et al. Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly. Acc Chem Res. 2013;46:312–26.

    Article  CAS  PubMed  Google Scholar 

  44. Sharifi E, Salimi A, Shams E, Noorbakhsh A, Amini MK. Shape-dependent electron transfer kinetics and catalytic activity of NiO nanoparticles immobilized onto DNA modified electrode: fabrication of highly sensitive enzymeless glucose sensor. Biosens Bioelectron. 2014;56:313–9.

    Article  CAS  PubMed  Google Scholar 

  45. Malaisse WJ, Maedler K. Imaging of the ??-cells of the islets of Langerhans. Diabetes Res Clin Pract 2012;11–8.

  46. Laurent D, Vinet L, Lamprianou S, Daval M, Filhoulaud G, Ktorza A, et al. Pancreatic β-cell imaging in humans: fiction or option? Diabetes, Obes Metab [Internet] Blackwell Publishing Ltd. 2016;18:6–15. doi:10.1111/dom.12544.

    Article  CAS  Google Scholar 

  47. Ariga K, Hill JP, Ji Q. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys Royal Society of Chemistry. 2007;9:2319–40.

    Article  CAS  Google Scholar 

  48. Trau D, Renneberg R. Encapsulation of glucose oxidase microparticles within a nanoscale layer-by-layer film: immobilization and biosensor applications. Biosens Bioelectron Elsevier. 2003;18:1491–9.

    Article  CAS  Google Scholar 

  49. Rahiman S. Nanomedicine current trends in diabetes management. J Nanomed Nanotechnol [Internet]. 2012;3:3–8. Available from: http://www.omicsonline.org/2157-7439/2157-7439-3-137.digital/2157-7439-3-137.html

    Google Scholar 

  50. Pickup JC, Zhi Z-L, Khan F, Saxl TE. Nanomedicine in diabetes management: where we are now and where next. Expert Rev Endocrinol Metab [Internet]. 2010;5:791–4. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-78649377498&partnerID=40&md5=853f7ee6e67a0fbf712b685eb2f151f0

    Article  Google Scholar 

  51. Control TD. 7. Approaches to glycemic treatment. Diabetes Care [Internet]. 2014;38:S41–8. Available from: http://care.diabetesjournals.org/cgi/doi/10.2337/dc15-S010

    Google Scholar 

  52. Sharma G, Sharma AR, Nam J-S, Doss GPC, Lee S-S, Chakraborty C. Nanoparticle based insulin delivery system: the next generation efficient therapy for type 1 diabetes. J Nanobiotechnology [Internet] BioMed Central. 2015;13:74. Available from: http://www.jnanobiotechnology.com/content/13/1/74

    Google Scholar 

  53. Malik DK, Baboota S, Ahuja A, Hasan S, Ali J. Recent advances in protein and peptide drug delivery systems. Curr Drug Deliv. 2007;4:141–51.

    Article  CAS  PubMed  Google Scholar 

  54. Fonte P, Araujo F, Reis S, Sarmento B. Oral insulin delivery: how far are we? J Diabetes Sci Technol United States. 2013;7:520–31.

    Article  Google Scholar 

  55. Chen MC, Sonaje K, Chen KJ, Sung HW. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials. 2011;9826–38.

  56. Morishita M, Peppas NA. Is the oral route possible for peptide and protein drug delivery? Drug Discov Today. 2006;905–10.

  57. Mo R, Jiang T, Di J, Tai W, Gu Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev [Internet]. 2014;43:3595–629. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24626293

    Article  CAS  Google Scholar 

  58. Tuesca AD, Reiff C, Joseph JI, Lowman AM. Synthesis, characterization and in vivo efficacy of pegylated insulin for oral delivery with complexation hydrogels. Pharm Res. 2009;26:727–39.

    Article  CAS  PubMed  Google Scholar 

  59. Niu M, Tan Y, Guan P, Hovgaard L, Lu Y, Qi J, et al. Enhanced oral absorption of insulin-loaded liposomes containing bile salts: a mechanistic study. Int J Pharm. 2014;460:119–30.

    Article  CAS  PubMed  Google Scholar 

  60. Cui M, Wu W, Hovgaard L, Lu Y, Chen D, Qi J. Liposomes containing cholesterol analogues of botanical origin as drug delivery systems to enhance the oral absorption of insulin. Int J Pharm. 2015;489:277–84.

    Article  CAS  PubMed  Google Scholar 

  61. Iwanaga K, Ono S, Narioka K, Morimoto K, Kakemi M, Yamashita S, et al. Oral delivery of insulin by using surface coating liposomes: improvement of stability of insulin in GI tract. Int J Pharm Elsevier. 1997;157:73–80.

    Article  CAS  Google Scholar 

  62. Al-Qadi S, Grenha A, Carrión-Recio D, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Control Release. 2012;157:383–90.

    Article  CAS  PubMed  Google Scholar 

  63. Fonte P, Araújo F, Silva C, Pereira C, Reis S, Santos HA, et al. Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol Adv 2014.

  64. Sarmento B, Martins S, Ferreira D, Souto EB. Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomedicine. 2007;2:743–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Florence AT, Hillery AM, Hussain N, Jani PU. Nanoparticles as carriers for oral peptide absorption: studies on particle uptake and fate. J Control Release Elsevier. 1995;36:39–46.

    Article  CAS  Google Scholar 

  66. Chaudhury A, Das S. Recent advancement of chitosan-based nanoparticles for oral controlled delivery of insulin and other therapeutic agents. AAPS PharmSciTech [Internet]. 2011;12:10–20. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3066343&tool=pmcentrez&rendertype=abstract

    Article  CAS  Google Scholar 

  67. Bansal V, Sharma PK, Sharma N, Pal OP, Malviya R. Applications of chitosan and chitosan derivatives in drug delivery. Biol Res. 2011;5:28–37.

    CAS  Google Scholar 

  68. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 2012;557–70.

  69. Lai SK, Wang Y-Y, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev Elsevier. 2009;61:158–71.

    Article  CAS  Google Scholar 

  70. des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control release Elsevier. 2006;116:1–27.

    Article  Google Scholar 

  71. Liu J, Zhang SM, Chen PP, Cheng L, Zhou W, Tang WX, et al. Controlled release of insulin from PLGA nanoparticles embedded within PVA hydrogels. J Mater Sci Mater Med 2007;2205–10.

  72. Ma R, Shi L. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polym Chem [Internet]. 2014;5:1503. Available from: http://xlink.rsc.org/?DOI=c3py01202f

    Article  CAS  Google Scholar 

  73. Chai Z, Ma L, Wang Y, Ren X. Phenylboronic acid as a glucose-responsive trigger to tune the insulin release of glycopolymer nanoparticles. J Biomater Sci Polym Ed Taylor & Francis. 2016:1–26.

  74. Ma R, Yang H, Li Z, Liu G, Sun X, Liu X, et al. Phenylboronic acid-based complex micelles with enhanced glucose-responsiveness at physiological pH by complexation with glycopolymer. Biomacromolecules. 2012;13:3409–17.

    Article  CAS  PubMed  Google Scholar 

  75. Breton M, Farret A, Bruttomesso D, Anderson S, Magni L, Patek S, et al. Fully integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose control maintains near normoglycemia. Diabetes. 2012;61:2230–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kropff J, DeVries JH. Continuous glucose monitoring, future products, and update on worldwide artificial pancreas projects. Diabetes Technol Ther [Internet]. 2016;18:S2-53–63. Available from: http://online.liebertpub.com/doi/10.1089/dia.2015.0345

    Article  Google Scholar 

  77. Desai TA. Microfabrication technology for pancreatic cell encapsulation. Expert Opin Biol Ther England. 2002;2:633–46.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Aljofan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devadasu, V.R., Alshammari, T.M. & Aljofan, M. Current advances in the utilization of nanotechnology for the diagnosis and treatment of diabetes. Int J Diabetes Dev Ctries 38, 11–19 (2018). https://doi.org/10.1007/s13410-017-0558-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-017-0558-1

Keywords

Navigation