Skip to main content

Advertisement

Log in

Expression of glucokinase, glucose 6-phosphatase, and stress protein in streptozotocin-induced diabetic rats treated with natural honey

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a metabolic disorder characterized by hyperglycemia and associated with oxidative stress. Based on literature, honey components could treat diabetes with unknown mechanism. The present study investigated the hypoglycemic effects and antioxidant activities of honey at the molecular level in STZ-induced diabetic rats. Using an animal model of diabetes, we investigated antidiabetic and antioxidant properties of natural honey. For this fasting blood glucose, malondialdehyde (MDA) level as a marker of lipid peroxidation and total antioxidant capacity were measured in diabetes-induced rats treated with natural honey. The transcript levels of stress proteins including heat shock protein 70 (HSP70), glucokinase (GK), and glucose 6-phosphatase (G6P) were determined using quantitative real-time PCR. Statistical analysis showed that honey significantly decreased MDA levels; in contrast, it increased total antioxidant capacity in diabetic rats (p < 0.05). Quantitative real-time PCR (QRT-PCR) analysis revealed that expressions of HSP70 and G6P decreased while the expression of GK increased in honey treatment groups in comparison with control group. These findings provide insight into the molecular mechanisms behind the hypoglycemic and antioxidative effects of honey that may be considered for further clinical studies in drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:4–14. doi:10.1016/j.diabres.2009.10.007.

    Article  CAS  PubMed  Google Scholar 

  2. Kim YS, Sohn E, Jung DH, et al. Expression of heat shock protein 90 in the kidneys of diabetic db/db mice. Eur Rev Med Pharmacol Sci. 2014;18:2198–204.

    CAS  PubMed  Google Scholar 

  3. Ashcroft FM, Rorsman P. Diabetes mellitus and the beta cell: the last ten years. Cell. 2012;148:1160–71. doi:10.1016/j.cell.2012.02.010.

    Article  CAS  PubMed  Google Scholar 

  4. Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17:24–38.

    Article  CAS  PubMed  Google Scholar 

  5. Atalay M, Oksala N, Lappalainen J, Laaksonen DE, Sen CK, Roy S. Heat shock proteins in diabetes and wound healing. Curr Protein Pept Sci. 2009;10:85–95. doi:10.2174/138920309787315202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pons H, Ferrebuz A, Quiroz Y, et al. Immune reactivity to heat shock protein 70 expressed in the kidney is cause of salt-sensitive hypertension. Am J Physiol Renal Physiol. 2013;304:289–99. doi:10.1152/ajprenal.00517.2012.

    Article  Google Scholar 

  7. Reddy VS, Raghu G, Reddy SS, Pasupulati AK, Suryanarayana P, Reddy GB. Response of small heat shock proteins in diabetic rat retina. Invest Ophthalmol Vis Sci. 2013;54:7674–82. doi:10.1167/iovs.13-12715.

    Article  CAS  PubMed  Google Scholar 

  8. Ritossa F. Discovery of the heat shock response. Cell Stress Chaperones. 1996;1:97–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neri S, Calvagno S, Mauceri B. Effects of antioxidants on postprandial oxidative stress and endothelial dysfunction in subjects with impaired glucose tolerance and type 2 diabetes. Eur J Nutr. 2010;49:409–16. doi:10.1007/s00394-010-0099-6.

    Article  CAS  PubMed  Google Scholar 

  10. Fenercioglu AK, Saler T, Genc E, Sabuncu H, Altuntas Y. The effects of polyphenol-containing antioxidants on oxidative stress and lipid peroxidation in type 2 diabetes mellitus without complications. J Endocrinol Invest. 2010;33:118–24. doi:10.3275/6564.

    Article  CAS  PubMed  Google Scholar 

  11. Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol. 2005;4:5. doi:10.1186/1475-2840-4-5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Erejuwa OO, Sulaiman SA, Ab Wahab MS. Honey: a novel antioxidant. Molecules. 2012;17:4400–423. doi:10.3390/molecules17044400.

    Article  CAS  PubMed  Google Scholar 

  13. Gharzouli K, Amira S, Gharzouli A, Khennouf S. Gastroprotective effects of honey and glucose-fructose-sucrose-maltose mixture against ethanol-, indomethacin- and acidified aspirin-induced lesions in the rat. Exp Toxicol Pathol. 2002;54:217–21.

    Article  CAS  PubMed  Google Scholar 

  14. Al-Waili NS, Saloom KY, Al-Waili TN, Al-Waili AN, Akmal M, Al-Waili FS, et al. Influence of various diet regimens on deterioration of hepatic function and hematological parameters following carbon tetrachloride: a potential protective role of natural honey. Nat Prod Res. 2006;20:1258–64.

    Article  CAS  PubMed  Google Scholar 

  15. Mohamed M, Sulaiman SA, Jaafar H, Sirajudeen KN. Effect of different doses of Malaysian honey on reproductive parameters in adult male rats. Andrologia. 2011;44(1):182–6. doi:10.1111/j.1439-0272.2010.01159.x.

    PubMed  Google Scholar 

  16. Zaid SS, Sulaiman SA, Sirajudeen KN, Othman NH. The effects of tualang honey on female reproductive organs, tibia bone and hormonal profile in ovariectomised rats—animal model for menopause. BMC Complement Altern Med. 2011;10:82.

    Article  Google Scholar 

  17. Erejuwa OO, Gurtu S, Sulaiman SA, Ab Wahab MS, Sirajudeen KN, Salleh MS. Hypoglycemic and antioxidant effects of honey supplementation in streptozotocin-induced diabetic rats. Int J Vitam Nutr Res. 2010;80:74–82.

    Article  CAS  PubMed  Google Scholar 

  18. Al-Waili N. Intrapulmonary administration of natural honey solution, hyperosmolar dextrose or hypoosmolar distill water to normal individuals and to patients with type-2 diabetes mellitus or hypertension: their effects on blood glucose level, plasma insulin and C-peptide, blood pressure and peaked expiratory flow rate. Eur J Med Res. 2003;8:295–303.

    CAS  PubMed  Google Scholar 

  19. Tan HT, Rahman RA, Gan SH, Halim AS, Hassan SA, Sulaiman SA, et al. The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey. BMC Complement Altern Med. 2009;9:34.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Koc AN, Silici S, Kasap F, Hormet-Oz HT, Mavus-Buldu H, Ercal BD. Antifungal activity of the honeybee products against Candida spp. and Trichosporon spp. J Med Food. 2011;14:128–34.

    Article  PubMed  Google Scholar 

  21. Kassim M, Achoui M, Mustafa MR, Mohd MA, Yusoff KM. Ellagic acid, phenolic acids and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutr Res. 2010;30:650–9.

    Article  CAS  PubMed  Google Scholar 

  22. Benzie IF, Strain J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239:70–6. doi:10.1006/abio.1996.0292.

    Article  CAS  PubMed  Google Scholar 

  23. Yagi K. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med. 1976;15:212–16.

    Article  CAS  PubMed  Google Scholar 

  24. Ji BC, Hsu WH, Yang JS, et al. Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo. J Agric Food Chem. 2009;57:7596–604. doi:10.1021/jf901308p.

    Article  CAS  PubMed  Google Scholar 

  25. Al-Hindi RR, Bin-Masalam MS, El-Shahawi MS. Antioxidant and antibacterial characteristics of phenolic extracts of locally produced honey in Saudi Arabia. Int J Food Sci Nutr. 2011;62:513–17. doi:10.3109/09637486.2010.550276.

    Article  CAS  PubMed  Google Scholar 

  26. Rodriguez-Malaver AJ, Rasmussen C, Gutierrez MG, Gil F, Nieves B, Vit P. Properties of honey from ten species of Peruvian stingless bees. Nat Prod Commun. 2009;4:1221–6.

    CAS  PubMed  Google Scholar 

  27. Oddo LP, Heard TA, Rodriguez-Malaver A, et al. Composition and antioxidant activity of Trigona carbonaria honey from Australia. J Med Food. 2008;11:789–94. doi:10.1089/jmf.2007.0724.

    Article  CAS  PubMed  Google Scholar 

  28. Mohamed M, Sirajudeen K, Swamy M, Yaacob NS, Sulaiman SA. Studies on the antioxidant properties of tualang honey of Malaysia. Afr J Tradit Complement Altern Med. 2010;7:59–63.

    PubMed Central  Google Scholar 

  29. Khalil MI, Alam N, Moniruzzaman M, Sulaiman SA, Gan SH. Phenolic acid composition and antioxidant properties of Malaysian honeys. J Food Sci. 2011;76:921–8. doi:10.1111/j.1750-3841.2011.02282.x.

    Article  Google Scholar 

  30. Van den Berg AJ, Van den Worm E, Van Ufford HC, Halkes SB, Hoekstra MJ, Beukelman CJ. An in vitro examination of the antioxidant and anti-inflammatory properties of buckwheat honey. J Wound Care. 2008;17:172–4. doi:10.12968/jowc.2008.17.4.28839.

    Article  PubMed  Google Scholar 

  31. Jerkovic I, Marijanovic Z. Oak (Quercus frainetto Ten.) honeydew honey—approach to screening of volatile organic composition and antioxidant capacity (DPPH and FRAP assay). Molecules. 2010;15:3744–56. doi:10.3390/molecules15053744.

    Article  CAS  PubMed  Google Scholar 

  32. Perez RA, Iglesias MT, Pueyo E, Gonzalez M, de Lorenzo C. Amino acid composition and antioxidant capacity of Spanish honeys. J Agric Food Chem. 2007;55:360–5. doi:10.1021/jf062055b.

    Article  CAS  PubMed  Google Scholar 

  33. Estevinho L, Pereira AP, Moreira L, Dias LG, Pereira E. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem Toxicol. 2008;46:3774–9. doi:10.1016/j.fct.2008.09.062.

    Article  CAS  PubMed  Google Scholar 

  34. Beretta G, Orioli M, Facino RM. Antioxidant and radical scavenging activity of honey in endothelial cell cultures (EA.hy926). Planta Med. 2007;73:1182–9. doi:10.1055/s-2007-981598.

    Article  CAS  PubMed  Google Scholar 

  35. Kishore RK, Halim AS, Syazana MS, Sirajudeen KN. Tualang honey has higher phenolic content and greater radical scavenging activity compared with other honey sources. Nutr Res. 2011;31:322–5. doi:10.1016/j.nutres.2011.03.001.

    Article  CAS  PubMed  Google Scholar 

  36. Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KNS, Salleh MS, Gurtu S. Comparison of antioxidant effects of honey, glibenclamide, metformin, and their combinations in the kidneys of streptozotocin-induced diabetic rats. Int J Mol Sci. 2011;12:829–43. doi:10.3390/ijms12010829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Al-Waili NS. Natural honey lowers plasma glucose, C-reactive protein, homocysteine, and blood lipids in healthy, diabetic, and hyperlipidemic subjects: comparison with dextrose and sucrose. J Med Food. 2004;7(1):100–7.

    Article  CAS  PubMed  Google Scholar 

  38. Earl GN, Garry XSh. Impact of exercise and metabolic disorders on heat shock proteins and vascular inflammation. Autoimmune Dis, 2012; 2012:836519. doi:10.1155/2012/836519.

  39. Hunter-Lavin C, Hudson PR, Mukherjee S, et al. Folate supplementation reduces serum HSP70 levels in patients with type 2 diabetes. Cell Stress Chaperones. 2004;9(4):344–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chua LS, Rahaman NL, Adnan NA, Eddie Tan TT. Antioxidant activity of three honey samples in relation with their biochemical components. J Anal Methods Chem. 2013;2013:313798. doi:10.1155/2013/313798.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This investigation was supported by Grant No. 711 from the office of Vice Chancellor for Research, Birjand University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Hemmati.

Ethics declarations

Conflict of interest

All contributing authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, M., Hemmati, M., Taheri-Ghahfarokhi, A. et al. Expression of glucokinase, glucose 6-phosphatase, and stress protein in streptozotocin-induced diabetic rats treated with natural honey. Int J Diabetes Dev Ctries 36, 125–131 (2016). https://doi.org/10.1007/s13410-015-0456-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-015-0456-3

Keywords

Navigation