Skip to main content

Advertisement

Log in

Glycogen synthase kinase-3β mediated regulation of matrix metalloproteinase-9 and its involvement in oral squamous cell carcinoma progression and invasion

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Oral squamous cell carcinoma (OSCC)-related deaths mainly result from invasion of the tumor cells into local cervical lymph nodes. It has been reported that progressive basement membrane loss promotes the metastatic and invasive capacities of OSCCs. Matrix metalloproteinase-9 (MMP-9) is known to play a central role in tumor progression and invasion. However, the role of MMP-9 in OSCC invasion has so far remained paradoxical and little is known about its regulation. Here, we aimed to assess MMP-9 expression regulation and its activation by glycogen synthase kinase-3β during human OSCC progression and invasion.

Methods

In the present study, 178 human OSCC samples, including 118 fresh samples (18 adjacent normal, 42 noninvasive and 58 invasive tumor samples) and 60 archival human tissue microarray (TMA) tongue cancer samples, were included. mRNA expression, protein expression, MMP-9/-2 activity, protein-protein interaction and Snail, c-Myc, β-catenin and TIMP1 expression were assessed using RT-PCR, immunohistochemistry, Western blotting, co-immunoprecipitation and gelatin zymography analyses, respectively. Wnt5a and LPA mediated MMP-9 regulation was assessed in OCSCC-derived SCC-9 cells exogenously expressing GSK3β (WT) or non phosphoryable GSK3β (S9A).

Results

We observed a progressive up-regulation/activation of MMP-9 at various stages of oral tumor progression/invasion. Positive correlations were observed between MMP-9 and c-Myc expression, MMP-9 and MMP-2 activity, MMP-9 and TIMP1 expression and MMP-9 activity and TIMP1-MMP-9 interaction. In contrast, a negative correlation between phosphorylated β-catenin and MMP-9 expression was observed. Conversely, we found that in oral tongue SCC MMP-9 expression was positively correlated with inactivation of GSK3 signaling. Finally, we found that Wnt5a and LPA mediated increased MMP-9 and decreased GSK3β activities in tongue SCC-derived SCC-9 cells. MMP-9 regulation by GSK3β was confirmed by using phosphoryable/regulatory GSK3β (WT construct) and not by non-phosphoryable GSK3β (S9A construct).

Conclusions

Collectively, our results show that MMP-9 overexpression and activation are important events occurring during OSCC progression/invasion and that this overexpression/activation is regulated by c-Myc, active MMP-2 and inactive GSK3β mediated pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Noguti, C.F. De Moura, G.P. De Jesus, V.H. Da Silva, T.A. Hossaka, C.T. Oshima, D.A. Ribeiro, Metastasis from oral cancer: An overview. Cancer Genomics Proteomics 9, 329–335 (2012)

    CAS  PubMed  Google Scholar 

  2. L. Jimenez, S.K. Jayakar, T.J. Ow, J.E. Segall, Mechanisms of invasion in head and neck cancer. Arch Pathol Lab Med 139, 1334–1348 (2015)

    Article  PubMed  Google Scholar 

  3. M.B. Duz, O.F. Karatas, E. Guzel, N.F. Turgut, M. Yilmaz, C.J. Creighton, M. Ozen, Identification of mir-139-5p as a saliva biomarker for tongue squamous cell carcinoma: A pilot study. Cell Oncol 39, 187–193 (2016)

    Article  CAS  Google Scholar 

  4. B. Jang, J.-A. Shin, Y.-S. Kim, J.-Y. Kim, H.-K. Yi, I.-S. Park, N.-P. Cho, S.-D. Cho, Growth-suppressive effect of suberoylanilide hydroxamic acid (saha) on human oral cancer cells. Cell Oncol 39, 79–87 (2016)

    Article  CAS  Google Scholar 

  5. M.A. St John, G. Wang, J. Luo, M. Dohadwala, D. Hu, Y. Lin, M. Dennis, J.M. Lee, D. Elashoff, T. Lawhon, S.L. Zaknoen, F.J. Burrows, S.M. Dubinett, Apricoxib upregulates 15-pgdh and pgt in tobacco-related epithelial malignancies. Br J Cancer 107, 707–712 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011)

    Article  CAS  PubMed  Google Scholar 

  7. C.R. Leemans, B.J. Braakhuis, R.H. Brakenhoff, The molecular biology of head and neck cancer. Nat Rev Cancer 11, 9–22 (2010)

    Article  PubMed  Google Scholar 

  8. K. Kessenbrock, V. Plaks, Z. Werb, Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 141, 52–67 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. J.E. Rundhaug, Matrix metalloproteinases, Angiogenesis, and cancer: Commentary re: A C Lockhart et al, reduction of wound angiogenesis in patients treated with bms-275291, a broad spectrum matrix metalloproteinase inhibitor Clin Cancer res, 9: 00–00, 2003 Clin Cancer Res 9, 551–554 (2003)

  10. B.P. Patel, S.V. Shah, S.N. Shukla, P.M. Shah, P.S. Patel, Clinical significance of mmp-2 and mmp-9 in patients with oral cancer. Head Neck 29, 564–572 (2007)

    Article  PubMed  Google Scholar 

  11. J.C. de Vicente, M.F. Fresno, L. Villalain, J.A. Vega, G. Hernandez Vallejo, Expression and clinical significance of matrix metalloproteinase-2 and matrix metalloproteinase-9 in oral squamous cell carcinoma. Oral Oncol 41, 283–293 (2005)

    Article  PubMed  Google Scholar 

  12. M. Aparna, L. Rao, V. Kunhikatta, R. Radhakrishnan, The role of mmp-2 and mmp-9 as prognostic markers in the early stages of tongue squamous cell carcinoma. J Oral Pathol Med 44, 345–352 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. L.K. Makinen, V. Hayry, T. Atula, C. Haglund, H. Keski-Santti, I. Leivo, A. Makitie, F. Passador-Santos, C. Bockelman, T. Salo, T. Sorsa, J. Hagstrom, Prognostic significance of matrix metalloproteinase-2, −8, −9, and −13 in oral tongue cancer. J Oral Pathol Med 41, 394–399 (2011)

    Article  PubMed  Google Scholar 

  14. S.S. Barros, A.C. Henriques, K.M. Pereira, A.M. de Medeiros, H.C. Galvao, A. Freitas Rde, Immunohistochemical expression of matrix metalloproteinases in squamous cell carcinoma of the tongue and lower lip. Arch Oral Biol 56, 752–760 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. L.M. Coussens, B. Fingleton, L.M. Matrisian, Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science 295, 2387–2392 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. D. Guttman, Y. Stern, T. Shpitzer, D. Ulanovski, T. Druzd, R. Feinmesser, Expression of mmp-9, timp-1, cd-34 and factor-8 as prognostic markers for squamous cell carcinoma of the tongue. Oral Oncol 40, 798–803 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. B. Qiao, N.W. Johnson, J. Gao, Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-beta1 is snail family-dependent and correlates with matrix metalloproteinase-2 and -9 expressions. Int J Oncol 37, 663–668 (2010)

    CAS  PubMed  Google Scholar 

  18. R. Mishra, Glycogen synthase kinase 3 beta: Can it be a target for oral cancer. Mol Cancer 9, 144 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  19. R. Mishra, S. Nagini, A. Rana, Expression and inactivation of glycogen synthase kinase 3 alpha/ beta and their association with the expression of cyclin d1 and p53 in oral squamous cell carcinoma progression. Mol Cancer 14, 20 (2015)

    Article  PubMed Central  PubMed  Google Scholar 

  20. G.R. Yedida, S. Nagini, R. Mishra, The importance of oncogenic transcription factors for oral cancer pathogenesis and treatment. Oral Surg Oral Med Oral Pathol Oral Radiol 116, 179–188 (2013)

    Article  PubMed  Google Scholar 

  21. E. Batlle, E. Sancho, C. Franci, D. Dominguez, M. Monfar, J. Baulida, A. Garcia De Herreros, The transcription factor snail is a repressor of e-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2, 84–89 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. B.P. Zhou, J. Deng, W. Xia, J. Xu, Y.M. Li, M. Gunduz, M.C. Hung, Dual regulation of snail by gsk-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6, 931–940 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Z. Prgomet, L. Axelsson, P. Lindberg, T. Andersson, Migration and invasion of oral squamous carcinoma cells is promoted by wnt5a, a regulator of cancer progression. J Oral Pathol Med 44, 776–784 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. N. Bhattacharya, A. Roy, B. Roy, S. Roychoudhury, C.K. Panda, Myc gene amplification reveals clinical association with head and neck squamous cell carcinoma in indian patients. J Oral Pathol Med 38, 759–763 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. R. Mishra, B.R. Das, Early overexpression of cdk4 and possible role of krf and c-myc in chewing tobacco mediated oral cancer development. Mol Biol Rep 30, 207–213 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. R. Fridman, M. Toth, D. Pena, S. Mobashery, Activation of progelatinase b (mmp-9) by gelatinase a (mmp-2). Cancer Res 55, 2548–2555 (1995)

    CAS  PubMed  Google Scholar 

  27. I.J. Brusevold, I.H. Tveteraas, M. Aasrum, J. Ødegård, D.L. Sandnes, T. Christoffersen, 516: Role of lpar3, pkc and egfr in lpa-induced cell migration in oral squamous carcinoma cells. Eur J Cancer S124 (2014)

  28. J.A. Lorenzo, C.C. Pilbeam, J.F. Kalinowski, M.S. Hibbs, Production of both 92- and 72-kda gelatinases by bone cells. Matrix 12, 282–290 (1992)

    Article  CAS  PubMed  Google Scholar 

  29. K.K. Pramanik, A.K. Singh, M. Alam, T. Kashyap, P. Mishra, A.K. Panda, R.K. Dey, A. Rana, S. Nagini, R. Mishra, Reversion-inducing cysteine-rich protein with kazal motifs and its regulation by glycogen synthase kinase 3 signaling in oral cancer. Tumor Biol 37, 15253–15264 (2016)

    Article  CAS  Google Scholar 

  30. S. Mukhopadhyay, H.G. Munshi, S. Kambhampati, A. Sassano, L.C. Platanias, M.S. Stack, Calcium-induced matrix metalloproteinase 9 gene expression is differentially regulated by erk1/2 and p38 mapk in oral keratinocytes and oral squamous cell carcinoma. J Biol Chem 279, 33139–33146 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. S.T. Vilen, T. Salo, T. Sorsa, P. Nyberg, Fluctuating roles of matrix metalloproteinase-9 in oral squamous cell carcinoma. ScientificWorldJournal 2013, 920595 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  32. K.U. Ogbureke, P.M. Weinberger, S.W. Looney, L. Li, L.W. Fisher, Expressions of matrix metalloproteinase-9 (mmp-9), dentin sialophosphoprotein (dspp), and osteopontin (opn) at histologically negative surgical margins may predict recurrence of oral squamous cell carcinoma. Oncotarget 3, 286–298 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  33. E.S. Nakamura, K. Koizumi, M. Kobayashi, I. Saiki, Inhibition of lymphangiogenesis-related properties of murine lymphatic endothelial cells and lymph node metastasis of lung cancer by the matrix metalloproteinase inhibitor mmi270. Cancer Sci 95, 25–31 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. R. Paduch, The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol 39, 397–410 (2016)

    Article  CAS  Google Scholar 

  35. K.W. Min, S.H. Lee, S.J. Baek, Moonlighting proteins in cancer. Cancer Lett 370, 108–116 (2016)

    Article  CAS  PubMed  Google Scholar 

  36. L. Li, H. Li, Role of microrna-mediated mmp regulation in the treatment and diagnosis of malignant tumors. Cancer biology & therapy 14, 796–805 (2013)

    Article  CAS  Google Scholar 

  37. K. Si-Tayeb, A. Monvoisin, C. Mazzocco, S. Lepreux, M. Decossas, G.l. Cubel, D.l. Taras, J.-F. Blanc, D.R. Robinson, J. Rosenbaum, Matrix metalloproteinase 3 is present in the cell nucleus and is involved in apoptosis. Am J Pathol 169, 1390–1401 (2006)

  38. J.A. Kwan, C.J. Schulze, W. Wang, H. Leon, M. Sariahmetoglu, M. Sung, J. Sawicka, D.E. Sims, G. Sawicki, R. Schulz, Matrix metalloproteinase-2 (mmp-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (adp-ribose) polymerase (parp) in vitro. FASEB J 18, 690–692 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. D.J. Marchant, C.L. Bellac, T.J. Moraes, S.J. Wadsworth, A. Dufour, G.S. Butler, L.M. Bilawchuk, R.G. Hendry, A.G. Robertson, C.T. Cheung, A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity. Nat Med 20, 493–502 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. M.A. Moles, J.A. Montoya, M.D. Salvago, I.R. Avila, J.J. Campillo, M. Bravo, Implications of differential expression of beta-catenin in oral carcinoma. Anticancer Res 36, 1599–1604 (2016)

    CAS  PubMed  Google Scholar 

  41. T. Hu, Y.R. Lu, Bcyrn1, a c-myc-activated long non-coding rna, regulates cell metastasis of non-small-cell lung cancer. Cancer Cell Int 15, 36 (2015)

    Article  PubMed Central  PubMed  Google Scholar 

  42. Y. Song, Q.X. Yang, F. Zhang, F. Meng, H. Li, Y. Dong, A. Han, Suppression of nasopharyngeal carcinoma cell by targeting beta-catenin signaling pathway. Cancer Epidemiol 36, e116–e121 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. J. Lian, J. Tang, H. Shi, H. Li, T. Zhen, W. Xie, F. Zhang, Y. Yang, A. Han, Positive feedback loop of hepatoma-derived growth factor and beta-catenin promotes carcinogenesis of colorectal cancer. Oncotarget 6, 29357–29374 (2015)

    PubMed Central  PubMed  Google Scholar 

  44. T. Zhen, S. Dai, H. Li, Y. Yang, L. Kang, H. Shi, F. Zhang, D. Yang, S. Cai, Y. He, Y. Liang, A. Han, Macc1 promotes carcinogenesis of colorectal cancer via beta-catenin signaling pathway. Oncotarget 5, 3756–3769 (2014)

    Article  PubMed Central  PubMed  Google Scholar 

  45. L. Sun, M.E. Diamond, A.J. Ottaviano, M.J. Joseph, V. Ananthanarayan, H.G. Munshi, Transforming growth factor-beta 1 promotes matrix metalloproteinase-9-mediated oral cancer invasion through snail expression. Mol Cancer Res 6, 10–20 (2008)

    Article  CAS  PubMed  Google Scholar 

  46. M.D. Sternlicht, Z. Werb, How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17, 463–516 (2001)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. M. Perez-Sayans Garcia, J.M. Suarez-Penaranda, P. Gayoso-Diz, F. Barros-Angueira, J.M. Gandara-Rey, A. Garcia-Garcia, Tissue inhibitor of metalloproteinases in oral squamous cell carcinomas - a therapeutic target? Cancer Lett 323, 11–19 (2012)

    Article  PubMed  Google Scholar 

  48. C. Ondruschka, P. Buhtz, C. Motsch, B. Freigang, R. Schneider-Stock, A. Roessner, C. Boltze, Prognostic value of mmp-2, −9 and timp-1,-2 immunoreactive protein at the invasive front in advanced head and neck squamous cell carcinomas. Pathol Res Pract 198, 509–515 (2002)

    Article  PubMed  Google Scholar 

  49. T. Yoshizaki, Y. Maruyama, H. Sato, M. Furukawa, Expression of tissue inhibitor of matrix metalloproteinase-2 correlates with activation of matrix metalloproteinase-2 and predicts poor prognosis in tongue squamous cell carcinoma. Int J Cancer 95, 44–50 (2001)

    Article  CAS  PubMed  Google Scholar 

  50. R. Lander, T. Nasr, S.D. Ochoa, K. Nordin, M.S. Prasad, C. Labonne, Interactions between twist and other core epithelial-mesenchymal transition factors are controlled by gsk3-mediated phosphorylation. Nat Commun 4, 1542 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  51. L. Zheng, N. Li, F. Guo, X.C. Jian, C.H. Jiang, P. Yin, A.J. Min, L. Huang, Twist-related protein 1 enhances oral tongue squamous cell carcinoma cell invasion through beta-catenin signaling. Mol Med Rep 11, 2255–2261 (2015)

    Article  CAS  PubMed  Google Scholar 

  52. C. Takahashi, Z. Sheng, T.P. Horan, H. Kitayama, M. Maki, K. Hitomi, Y. Kitaura, S. Takai, R.M. Sasahara, A. Horimoto, Y. Ikawa, B.J. Ratzkin, T. Arakawa, M. Noda, Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein reck. Proc Natl Acad Sci U S A 95, 13221–13226 (1998)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. S.L. Dallas, J.L. Rosser, G.R. Mundy, L.F. Bonewald, Proteolysis of latent transforming growth factor-beta (tgf-beta )-binding protein-1 by osteoclasts. A cellular mechanism for release of tgf-beta from bone matrix. J Biol Chem 277, 21352–21360 (2002)

    Article  CAS  PubMed  Google Scholar 

  54. K.D. Cowden Dahl, J. Symowicz, Y. Ning, E. Gutierrez, D.A. Fishman, B.P. Adley, M.S. Stack, L.G. Hudson, Matrix metalloproteinase 9 is a mediator of epidermal growth factor-dependent e-cadherin loss in ovarian carcinoma cells. Cancer Res 68, 4606–4613 (2008)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Prof. M.K. Rai (Pathologist), Director, RIMS, Ranchi and Prof. N.K. Jha, Head Dept. of Surgery (and his colleagues) RIMS, Ranchi and the Director of CARA, Cancer Hospital, Ranchi and his colleagues Dr. M. Akhouri, Dr. Aftab A. Ansari and Dr. K. Saurav and Dr. Raghav Sharan (Clinic), Ranchi for their cooperation. The fellowship of KKP (CSIR), PM (CUJ), AKS (DBT-RA) and the financial support of DBT, New Delhi (ProjectNo.BT/PR4624/MED/30/701/2012; Departmental DBT Builder Programme No. BT/PR9028/INF/22/193/ 2013) are acknowledged.

Funding

No role except financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

KKP performed the IHC, WB, RT-PCR and zymography experiments; KKP, PM, AKS, MA, TK and NN performed the cell culture experiments; KKP and RM analyzed the results. RM, SN and AR provided their knowledge of biochemistry and molecular biology. RM has written the MS and the final version of the MS has been approved by all the authors.

Corresponding author

Correspondence to Rajakishore Mishra.

Ethics declarations

Conflicts of interest

None declared.

Electronic supplementary material

13402_2017_358_MOESM1_ESM.jpg

The quantitative expression of associated molecules that comes under GSK3β pathway and may promotes the activation of MMP-9 in SCC-9 cells. Quantitative expression (mean and SD) of representative immunoblots (WB) of (A1) β-catenin, (A2) c-myc (A3) Twist, (A4) MMP9 protein expression; and gel picture (RT-PCR) of (A5) MMP-9, (A6) MMP-2 and (A7) TIMP-2, showing the differential expression, at various treated conditions, as indicated in the figure. (* p < 0.05, **p < 0.01, ***p < 0.001). (JPEG 200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, K.K., Nagini, S., Singh, A.K. et al. Glycogen synthase kinase-3β mediated regulation of matrix metalloproteinase-9 and its involvement in oral squamous cell carcinoma progression and invasion. Cell Oncol. 41, 47–60 (2018). https://doi.org/10.1007/s13402-017-0358-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-017-0358-0

Keywords

Navigation