Skip to main content

Advertisement

Log in

Integrative transcriptome analysis of liver cancer profiles identifies upstream regulators and clinical significance of ACSM3 gene expression

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Hepatocellular carcinoma (HCC) is one of the most common human malignancies. It has frequently been associated with metabolic perturbations and liver damages. Various members of the family of acyl-CoA synthetases are known to be involved in the production of bioactive fatty acids, and altered expression of its encoding genes has been found to be involved in metabolic perturbations. For the development of novel diagnostic and therapeutic HCC options, a fundamental understanding of the mechanisms associated with the deregulation of candidate genes involved in metabolic perturbation is required.

Methods

A meta-analysis of multiple HCC mRNA profiles was performed to identify consistently deregulated genes. Expression of the acyl-CoA synthetase medium chain family member 3 (ACSM3) gene was subsequently assessed in different HCC tumor stages and correlated with various clinicopathological features. Transcription regulation, survival and pathway-associated features of the ACSM3 gene were investigated using integrative functional genomic and molecular cell biological methods.

Results

We found that expression of the ACSM3 gene was significantly reduced in HCC tissues and was frequently downregulated in patients exhibiting high alpha-fetoprotein (AFP) levels, high alanine aminotransferase (ALT) levels, multiple nodules and large tumors. Loss of ACSM3 expression was found to correlate with advanced HCC stages and a poor survival. In addition, HNF4α was found to positively regulate the expression of the ACSM3 gene, while PPARγ was found to transcriptionally repress it. Downregulation of ACSM3 expression was perceived upon activation of the TGFβ, WNT, AKT and MYC signalling pathways. In addition, we found that ACSM3 expression correlates with fatty acid oxidation in HCC.

Conclusion

Our data provide evidence for a differential expression and regulation of the ACSM3 gene in HCC, and may lay a foundation for therapeutically targeting fatty acid metabolism in these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.G. Singal, A. Pillai, J. Tiro, Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: A meta-analysis. PLoS Med 11, e1001624 (2014). doi:10.1371/journal.pmed.1001624

    Article  PubMed  PubMed Central  Google Scholar 

  2. J. Liu, X. Wei, Y. Wu, Y. Wang, Y. Qiu, J. Shi, H. Zhou, Z. Lu, M. Shao, L. Yu, L. Tong, Giganteaside D induces ROS-mediated apoptosis in human hepatocellular carcinoma cells through the MAPK pathway. Cell Oncol 39, 333–342 (2016). doi:10.1007/s13402-016-0273-9

    Article  CAS  Google Scholar 

  3. V. Ramesh, K. Selvarasu, J. Pandian, S. Myilsamy, C. Shanmugasundaram, K. Ganesan, NFkappaB activation demarcates a subset of hepatocellular carcinoma patients for targeted therapy. Cell Oncol 39, 523–536 (2016). doi:10.1007/s13402-016-0294-4

    Article  CAS  Google Scholar 

  4. J.M. Llovet, J. Bustamante, A. Castells, R. Vilana, C. Ayuso Mdel, M. Sala, C. Bru, J. Rodes, J. Bruix, Natural history of untreated nonsurgical hepatocellular carcinoma: Rationale for the design and evaluation of therapeutic trials. Hepatology 29, 62–67 (1999). doi:10.1002/hep.510290145

    Article  CAS  PubMed  Google Scholar 

  5. K.T. Padhya, J.A. Marrero, A.G. Singal, J.K. Choi, J.Y. Choi, D.G. Kim, D.W. Choi, B.Y. Kim, K.H. Lee, Y.I. Yeom, H.S. Yoo, O.J. Yoo, S. Kim, Recent advances in the treatment of hepatocellular carcinoma. Curr Opin Gastroenterol 29, 285–292 (2013). doi:10.1097/MOG.0b013e32835ff1cf

    Article  CAS  PubMed  Google Scholar 

  6. J.K. Choi, J.Y. Choi, D.G. Kim, D.W. Choi, B.Y. Kim, K.H. Lee, Y.I. Yeom, H.S. Yoo, O.J. Yoo, S. Kim, Integrative analysis of multiple gene expression profiles applied to liver cancer study. FEBS Lett 565, 93–100 (2004). doi:10.1016/j.febslet.2004.03.081

    Article  CAS  PubMed  Google Scholar 

  7. S.K. Chan, O.L. Griffith, I.T. Tai, S.J. Jones, R. Elkon, C. Linhart, R. Sharan, R. Shamir, Y. Shiloh, Meta-analysis of colorectal cancer gene expression profiling studies identifies consistently reported candidate biomarkers. Cancer Epidemiol Biomark Prev 17, 543–552 (2008). doi:10.1158/1055-9965.EPI-07-2615

    Article  CAS  Google Scholar 

  8. M. Giulietti, G. Occhipinti, G. Principato, F. Piva, Weighted gene co-expression network analysis reveals key genes involved in pancreatic ductal adenocarcinoma development. Cell Oncol 39, 379–388 (2016). doi:10.1007/s13402-016-0283-7

    Article  CAS  Google Scholar 

  9. R. Elkon, C. Linhart, R. Sharan, R. Shamir, Y. Shiloh, Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells. Genome Res 13, 773–780 (2003). doi:10.1101/gr.947203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Y. Zhao, E.B. Butler, M. Tan, Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4, e532 (2013). doi:10.1038/cddis.2013.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. E. Currie, A. Schulze, R. Zechner, T.C. Walther, R.V. Farese Jr., Cellular fatty acid metabolism and cancer. Cell Metab 18, 153–161 (2013). doi:10.1016/j.cmet.2013.05.017

  12. P.A. Watkins, D. Maiguel, Z. Jia, J. Pevsner, Evidence for 26 distinct acyl-coenzyme a synthetase genes in the human genome. J Lipid Res 48, 2736–2750 (2007). doi:10.1194/jlr.M700378-JLR200

    Article  CAS  PubMed  Google Scholar 

  13. H. Cai, H. Chen, T. Yi, C.M. Daimon, J.P. Boyle, C. Peers, S. Maudsley, B. Martin, VennPlex--a novel Venn diagram program for comparing and visualizing datasets with differentially regulated datapoints. PLoS One 8, e53388 (2013). doi:10.1371/journal.pone.0053388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. C. Li, W.H. Wong, Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proc Natl Acad Sci U S A 98, 31–36 (2001). doi:10.1073/pnas.011404098

    Article  CAS  PubMed  Google Scholar 

  15. J.T. Chang, J.R. Nevins, GATHER: A systems approach to interpreting genomic signatures. Bioinformatics 22, 2926–2933 (2006). doi:10.1093/bioinformatics/btl483

    Article  CAS  PubMed  Google Scholar 

  16. V.D. Marinescu, I.S. Kohane, A. Riva, The MAPPER database: A multi-genome catalog of putative transcription factor binding sites. Nucleic Acids Res 33, D91–D97 (2005). doi:10.1093/nar/gki103

    Article  CAS  PubMed  Google Scholar 

  17. A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander, J.P. Mesirov, Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545–15550 (2005). doi:10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. K. Kandasamy, S.S. Mohan, R. Raju, S. Keerthikumar, G.S. Kumar, A.K. Venugopal, D. Telikicherla, J.D. Navarro, S. Mathivanan, C. Pecquet, S.K. Gollapudi, S.G. Tattikota, S. Mohan, H. Padhukasahasram, Y. Subbannayya, R. Goel, H.K. Jacob, J. Zhong, R. Sekhar, V. Nanjappa, L. Balakrishnan, R. Subbaiah, Y.L. Ramachandra, B.A. Rahiman, T.S. Prasad, J.X. Lin, J.C. Houtman, S. Desiderio, J.C. Renauld, S.N. Constantinescu, O. Ohara, T. Hirano, M. Kubo, S. Singh, P. Khatri, S. Draghici, G.D. Bader, C. Sander, W.J. Leonard, A. Pandey, NetPath: a public resource of curated signal transduction pathways. Genome Biol 11, R3 (2010). doi:10.1186/gb-2010-11-1-r3

    Article  PubMed  PubMed Central  Google Scholar 

  19. M. Muthuswami, V. Ramesh, S. Banerjee, S. Viveka Thangaraj, J. Periasamy, D. Bhaskar Rao, G.D. Barnabas, S. Raghavan, K. Ganesan, B.W. Dyer, F.A. Ferrer, D.K. Klinedinst and R. Rodriguez. Breast tumors with elevated expression of 1q candidate genes confer poor clinical outcome and sensitivity to Ras/PI3K inhibition. e77553 (2013). doi:10.1371/journal.pone.0077553

  20. B.W. Dyer, F.A. Ferrer, D.K. Klinedinst, R. Rodriguez, A noncommercial dual luciferase enzyme assay system for reporter gene analysis. Anal Biochem 282, 158–161 (2000). doi:10.1006/abio.2000.4605

    Article  CAS  PubMed  Google Scholar 

  21. J.S. Lee, J. Taminau, C. Lazar, S. Meganck, A. Nowe, J. Sakamoto, H. Kimura, S. Moriyama, H. Odaka, Y. Momose, Y. Sugiyama, H. Sawada, Genomic profiling of liver cancer. Genomics Inform 11, 180–185 (2013). doi:10.5808/GI.2013.11.4.180

    Article  PubMed  PubMed Central  Google Scholar 

  22. J. Taminau, C. Lazar, S. Meganck, A. Nowe, Comparison of merging and meta-analysis as alternative approaches for integrative gene expression analysis. ISRN Bioinform 2014, 345106 (2014). doi:10.1155/2014/345106

    Article  PubMed  PubMed Central  Google Scholar 

  23. I. Boomgaarden, C. Vock, M. Klapper, F. Doring, Y. Hoshida, S.M. Nijman, M. Kobayashi, J.A. Chan, J.P. Brunet, D.Y. Chiang, A. Villanueva, P. Newell, K. Ikeda, M. Hashimoto, G. Watanabe, S. Gabriel, S.L. Friedman, H. Kumada, J.M. Llovet, T.R. Golub, J.W. Kim, Q. Ye, M. Forgues, Y. Chen, A. Budhu, J. Sime, L.J. Hofseth, R. Kaul, X.W. Wang, Comparative analyses of disease risk genes belonging to the acyl-CoA synthetase medium-chain (ACSM) family in human liver and cell lines. Biochem Genet 47, 739–748 (2009). doi:10.1007/s10528–009-9273-z

    Article  CAS  PubMed  Google Scholar 

  24. J. Sakamoto, H. Kimura, S. Moriyama, H. Odaka, Y. Momose, Y. Sugiyama, H. Sawada, Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Commun 278, 704–711 (2000). doi:10.1006/bbrc.2000.3868

    Article  CAS  PubMed  Google Scholar 

  25. H.S. Camp, O. Li, S.C. Wise, Y.H. Hong, C.L. Frankowski, X. Shen, R. Vanbogelen, T. Leff, Differential activation of peroxisome proliferator-activated receptor-gamma by troglitazone and rosiglitazone. Diabetes 49, 539–547 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. J.M. Seargent, E.A. Yates, J.H. Gill, GW9662, a potent antagonist of PPARgamma, inhibits growth of breast tumour cells and promotes the anticancer effects of the PPARgamma agonist rosiglitazone, independently of PPARgamma activation. Br J Pharmacol 143, 933–937 (2004). doi:10.1038/sj.bjp.0705973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. D.J. Adamson, D. Frew, R. Tatoud, C.R. Wolf, C.N. Palmer, Diclofenac antagonizes peroxisome proliferator-activated receptor-gamma signaling. Mol Pharmacol 61, 7–12 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. C.P. Martinez-Jimenez, I. Kyrmizi, P. Cardot, F.J. Gonzalez, I. Talianidis, S. Yu, K. Matsusue, P. Kashireddy, W.Q. Cao, V. Yeldandi, A.V. Yeldandi, M.S. Rao, J.K. Reddy, Hepatocyte nuclear factor 4alpha coordinates a transcription factor network regulating hepatic fatty acid metabolism. Mol Cell Biol 30, 565–577 (2010). doi:10.1128/MCB.00927-09

    Article  CAS  PubMed  Google Scholar 

  29. S. Yu, K. Matsusue, P. Kashireddy, W.Q. Cao, V. Yeldandi, A.V. Yeldandi, M.S. Rao, F.J. Gonzalez, J.K. Reddy, Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor gamma1 (PPARgamma1) overexpression. J Biol Chem 278, 498–505 (2003). doi:10.1074/jbc.M210062200

    Article  CAS  PubMed  Google Scholar 

  30. M. Lehrke, M.A. Lazar, The many faces of PPARgamma. Cell 123, 993–999 (2005). doi:10.1016/j.cell.2005.11.026

    Article  CAS  PubMed  Google Scholar 

  31. Y. Hoshida, S.M. Nijman, M. Kobayashi, J.A. Chan, J.P. Brunet, D.Y. Chiang, A. Villanueva, P. Newell, K. Ikeda, M. Hashimoto, G. Watanabe, S. Gabriel, S.L. Friedman, H. Kumada, J.M. Llovet, T.R. Golub, N. Iwai, T. Mannami, H. Tomoike, K. Ono, Y. Iwanaga, Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 69, 7385–7392 (2009). doi:10.1158/0008-5472.CAN-09-1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. N. Iwai, T. Mannami, H. Tomoike, K. Ono, Y. Iwanaga, An acyl-CoA synthetase gene family in chromosome 16p12 may contribute to multiple risk factors. Hypertension 41, 1041–1046 (2003). doi:10.1161/01.HYP.0000064944.60569.87

    Article  CAS  PubMed  Google Scholar 

  33. J.W. Kim, Q. Ye, M. Forgues, Y. Chen, A. Budhu, J. Sime, L.J. Hofseth, R. Kaul, X.W. Wang, Cancer-associated molecular signature in the tissue samples of patients with cirrhosis. Hepatology 39, 518–527 (2004). doi:10.1002/hep.20053

    Article  CAS  PubMed  Google Scholar 

  34. A. Budhu, M. Forgues, Q.H. Ye, H.L. Jia, P. He, K.A. Zanetti, U.S. Kammula, Y. Chen, L.X. Qin, Z.Y. Tang, X.W. Wang, Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 10, 99–111 (2006). doi:10.1016/j.ccr.2006.06.016

    Article  CAS  PubMed  Google Scholar 

  35. H.L. Jia, Q.H. Ye, L.X. Qin, A. Budhu, M. Forgues, Y. Chen, Y.K. Liu, H.C. Sun, L. Wang, H.Z. Lu, F. Shen, Z.Y. Tang, X.W. Wang, Gene expression profiling reveals potential biomarkers of human hepatocellular carcinoma. Clin Cancer Res 13, 1133–1139 (2007). doi:10.1158/1078-0432.CCR-06-1025

    Article  CAS  PubMed  Google Scholar 

  36. Q.H. Ye, L.X. Qin, M. Forgues, P. He, J.W. Kim, A.C. Peng, R. Simon, Y. Li, A.I. Robles, Y. Chen, Z.C. Ma, Z.Q. Wu, S.L. Ye, Y.K. Liu, Z.Y. Tang, X.W. Wang, Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 9, 416–423 (2003). doi:10.1038/nm843

    Article  CAS  PubMed  Google Scholar 

  37. N. Iizuka, M. Oka, H. Yamada-Okabe, M. Nishida, Y. Maeda, N. Mori, T. Takao, T. Tamesa, A. Tangoku, H. Tabuchi, K. Hamada, H. Nakayama, H. Ishitsuka, T. Miyamoto, A. Hirabayashi, S. Uchimura, Y. Hamamoto, Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet 361, 923–929 (2003). doi:10.1016/S0140-6736(03)12775-4

    Article  CAS  PubMed  Google Scholar 

  38. Y. Hoshida, A. Villanueva, M. Kobayashi, J. Peix, D.Y. Chiang, A. Camargo, S. Gupta, J. Moore, M.J. Wrobel, J. Lerner, M. Reich, J.A. Chan, J.N. Glickman, K. Ikeda, M. Hashimoto, G. Watanabe, M.G. Daidone, S. Roayaie, M. Schwartz, S. Thung, H.B. Salvesen, S. Gabriel, V. Mazzaferro, J. Bruix, S.L. Friedman, H. Kumada, J.M. Llovet, T.R. Golub, M.E. Monaco, C.J. Creighton, P. Lee, X. Zou, M.K. Topham, D.M. Stafforini, Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 359, 1995–2004 (2008). doi:10.1056/NEJMoa0804525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M.E. Monaco, C.J. Creighton, P. Lee, X. Zou, M.K. Topham, D.M. Stafforini, Expression of long-chain fatty acyl-CoA Synthetase 4 in breast and prostate cancers is associated with sex steroid hormone receptor negativity. Transl Oncol 3, 91–98 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  40. X. Wu, Y. Li, J. Wang, X. Wen, M.T. Marcus, G. Daniels, D.Y. Zhang, F. Ye, L.H. Wang, X. Du, S. Adams, B. Singh, J. Zavadil, P. Lee, M.E. Monaco, Long chain fatty acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer. PLoS One 8, e77060 (2013). doi:10.1371/journal.pone.0077060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. T. Mashima, S. Sato, S. Okabe, S. Miyata, M. Matsuura, Y. Sugimoto, T. Tsuruo, H. Seimiya, Acyl-CoA synthetase as a cancer survival factor: Its inhibition enhances the efficacy of etoposide. Cancer Sci 100, 1556–1562 (2009). doi:10.1111/j.1349-7006.2009.01203.x

    Article  CAS  PubMed  Google Scholar 

  42. Z. Pei, P. Fraisl, X. Shi, E. Gabrielson, S. Forss-Petter, J. Berger, P.A. Watkins, Very long-chain acyl-CoA synthetase 3: Overexpression and growth dependence in lung cancer. PLoS One 8, e69392 (2013). doi:10.1371/journal.pone.0069392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. J.Y. Chiang, J.A. Bonzo, C.H. Ferry, T. Matsubara, J.H. Kim, F.J. Gonzalez, Hepatocyte nuclear factor 4alpha regulation of bile acid and drug metabolism. Expert Opin Drug Metab Toxicol 5, 137–147 (2009). doi:10.1517/17425250802707342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J.A. Bonzo, C.H. Ferry, T. Matsubara, J.H. Kim, F.J. Gonzalez, Suppression of hepatocyte proliferation by hepatocyte nuclear factor 4alpha in adult mice. J Biol Chem 287, 7345–7356 (2012). doi:10.1074/jbc.M111.334599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. L. Michalik, B. Desvergne, W. Wahli, Peroxisome-proliferator-activated receptors and cancers: Complex stories. Nat Rev Cancer 4, 61–70 (2004). doi:10.1038/nrc1254

    Article  CAS  PubMed  Google Scholar 

  46. J. Rieusset, F. Touri, L. Michalik, P. Escher, B. Desvergne, E. Niesor, W. Wahli, A new selective peroxisome proliferator-activated receptor gamma antagonist with antiobesity and antidiabetic activity. Mol Endocrinol 16, 2628–2644 (2002). doi:10.1210/me.2002-0036

    Article  CAS  PubMed  Google Scholar 

  47. K.R. Kim, H.N. Choi, H.J. Lee, H.A. Baek, H.S. Park, K.Y. Jang, M.J. Chung, W.S. Moon, A peroxisome proliferator-activated receptor gamma antagonist induces vimentin cleavage and inhibits invasion in high-grade hepatocellular carcinoma. Oncol Rep 18, 825–832 (2007)

    CAS  PubMed  Google Scholar 

  48. G. Martin, K. Schoonjans, A.M. Lefebvre, B. Staels, J. Auwerx, Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J Biol Chem 272, 28210–28217 (1997)

    Article  CAS  PubMed  Google Scholar 

  49. M. Yang, S.N. Li, K.M. Anjum, L.X. Gui, S.S. Zhu, J. Liu, J.K. Chen, Q.F. Liu, G.D. Ye, W.J. Wang, J.F. Wu, W.Y. Cai, G.B. Sun, Y.J. Liu, R.F. Liu, Z.M. Zhang, B.A. Li, A. Sanchez, A.M. Alvarez, J.M. Lopez Pedrosa, C. Roncero, M. Benito, I. Fabregat, A double-negative feedback loop between Wnt-beta-catenin signaling and HNF4alpha regulates epithelial-mesenchymal transition in hepatocellular carcinoma. J Cell Sci 126, 5692–5703 (2013). doi:10.1242/jcs.135053

    Article  CAS  PubMed  Google Scholar 

  50. A. Sanchez, A.M. Alvarez, J.M. Lopez Pedrosa, C. Roncero, M. Benito, I. Fabregat, Apoptotic response to TGF-beta in fetal hepatocytes depends upon their state of differentiation. Exp Cell Res 252, 281–291 (1999). doi:10.1006/excr.1999.4624

    Article  CAS  PubMed  Google Scholar 

  51. S. Lucas Sd, J.M. Lopez-Alcorocho, J. Bartolome, V. Carreno, Nitric oxide and TGF-beta1 inhibit HNF-4alpha function in HEPG2 cells. Biochem Biophys Res Commun 321, 688–694 (2004). doi:10.1016/j.bbrc.2004.07.025

    Article  Google Scholar 

  52. D. Becker, I. Sfakianakis, M. Krupp, F. Staib, A. Gerhold-Ay, A. Victor, H. Binder, M. Blettner, T. Maass, S. Thorgeirsson, P.R. Galle, A. Teufel, Genetic signatures shared in embryonic liver development and liver cancer define prognostically relevant subgroups in HCC. Mol Cancer 11, 55 (2012). doi:10.1186/1476-4598-11-55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Department of Atomic Energy (DAE), Government of India (Grant No.6/6/2008/R&D-II-230R) and the Department of Biotechnology (DBT), Government of India (MKU-DBT–IPLS programme, No.BT/PR 14553/INF/22/124/2010). Instrumentation support from UGC-CEGS, DBT-IPLS, UGC-NRCBS, UGC-CAS, and the DST-PURSE programme-supported central facilities of SBS, MKU are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumaresan Ganesan.

Ethics declarations

Conflict of interest

Conflict of Interest for all authors – None.

Additional information

Key Points

• Expression of ACSM3 negatively correlates with aggressiveness in HCC

• HNF4α and PPARγ are the transcriptional regulators of ACSM3

• Activated TGFβ & AKT signalling inhibits ACSM3 expression in HCC

Electronic supplementary material

ESM 1

(PPTX 2201 kb)

ESM 2

(XLSX 28.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopal, R., Selvarasu, K., Pandian, P.P. et al. Integrative transcriptome analysis of liver cancer profiles identifies upstream regulators and clinical significance of ACSM3 gene expression. Cell Oncol. 40, 219–233 (2017). https://doi.org/10.1007/s13402-017-0321-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-017-0321-0

Keywords

Navigation