Skip to main content

Advertisement

Log in

The stem cell markers Oct4A, Nanog and c-Myc are expressed in ascites cells and tumor tissue of ovarian cancer patients

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to examine the expression of established stem cell markers in ascites and tumor tissue obtained from ovarian cancer patients.

Methods

Mononuclear cells present in ascites were collected by density gradient centrifugation. Intracellular flowcytometry was used to assess the putative presence of stem cell markers. RT-PCR was used to detect full length Oct4A, a splice variant Oct4B, implicated in glioma and breast cancer, Oct4 pseudogenes and c-Myc. Genes were cloned and sequenced to determine putative mutations. Confocal laser scanning microscopy was performed to localize the markers in ascites cells as well as in tumor tissue. Material from carcinomas other than epithelial ovarian carcinoma served as control.

Results

A small quantity of cells in ascites and in tumor tissue of ovarian cancer patients was detected that expresses c-Myc, Oct4A and Nanog. Besides Oct4A, present in the nucleus, also the cytoplasmic resident Oct4B splice variant was detected. Remarkably, c-Myc was found partially in the cytoplasm. Since no mutations in c-Myc were found that could explain the cytoplasmic localization, we hypothesize that this is due an IL-6 induced c-Myc shuttle factor.

Conclusions

The expression of stem cell genes was detected in a small proportion of tumor cells present in ascites as well as in tumor tissue. IL-6 plays an important role in the induction of c-Myc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Abelson, Y. Shamai, L. Berger, R. Shouval, K. Skorecki, M. Tzukerman, Intratumoral heterogeneity in the self-renewal and tumorigenic differentiation of ovarian cancer. Stem Cells 30, 415–42410.1002/stem.1029 (2012)

  2. M. Al-Hajj, M.W. Becker, M. Wicha, I. Weissman, M.F. Clarke, Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev. 14, 43–47 (2004)

    Article  PubMed  CAS  Google Scholar 

  3. M. Al-Hajj, M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, M.F. Clarke, Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. U. S. A. 100, 3983–3988 (2003)

    Article  PubMed  CAS  Google Scholar 

  4. A.B. Alvero, M.K. Montagna, J.C. Holmberg, V. Craveiro, D. Brown, G. Mor, Targeting the mitochondria activates two independent cell death pathways in ovarian cancer stem cells. Mol. Cancer Ther. 10, 1385–1393 (2011)

    Article  PubMed  CAS  Google Scholar 

  5. F. Bahram, N. von der Lehr, C. Cetinkaya, L.G. Larsson, c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood 95, 2104–2110 (2000)

    PubMed  CAS  Google Scholar 

  6. N.B. Berry, S.A. Bapat, Ovarian cancer plasticity and epigenomics in the acquisition of a stem-like phenotype. J Ovarian Res 1, 8 (2008)

    Article  PubMed  Google Scholar 

  7. D. Bonnet, J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997)

    Article  PubMed  CAS  Google Scholar 

  8. G. Cauffman, I. Liebaers, A. Van Steirteghem, H. Van de Velde, POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos. Stem Cells 24, 2685–2691 (2006)

    Article  PubMed  CAS  Google Scholar 

  9. B. Chang, G. Liu, F. Xue et al., ALDH1 expression correlates with favorable prognosis in ovarian cancers. Mod. Pathol. 22, 817–823 (2009)

    PubMed  CAS  Google Scholar 

  10. H. Clevers, The cancer stem cell: premises, promises and challenges. Nat. Med. 17, 313–319 (2011)

    Article  PubMed  CAS  Google Scholar 

  11. P. Dalerba, S.J. Dylla, I.K. Park et al., Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl. Acad. Sci. U. S. A. 104, 10158–10163 (2007)

    Article  PubMed  CAS  Google Scholar 

  12. C.V. Dang, W.M. Lee, Identification of the human c-myc protein nuclear translocation signal. Mol. Cell. Biol. 8, 4048–4054 (1988)

    PubMed  CAS  Google Scholar 

  13. S. Deng, X. Yang, H. Lassus et al., Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 5, e10277 (2010)

    Article  PubMed  Google Scholar 

  14. K.M. Dhodapkar, D. Feldman, P. Matthews et al., Natural immunity to pluripotency antigen OCT4 in humans. Proc. Natl. Acad. Sci. U. S. A. 107, 8718–8723 (2010)

    Article  PubMed  CAS  Google Scholar 

  15. J. Di, T. Duiveman-de Boer, C.G. Figdor, R. Torensma, Eradicating cancer cells: struggle with a chameleon. Oncotarget 2, 99–101 (2011)

    PubMed  Google Scholar 

  16. J. Di, L.F. Massuger, T. Duiveman-de Boer, P.L. Zusterzeel, C.G. Figdor, R. Torensma, Functional OCT4-specific CD4 and CD8 T cells in healthy controls and ovarian cancer patients. Oncoimmunology 2, e24271 (2013)

  17. J. Di, R. Yigit, C.G. Figdor, T. Duiveman-de Boer, L.F.A.G. Massuger, R. Torensma, Expression compilation of several putative cancer stem cell markers by primary ovarian carcinoma. J. Cancer Ther. 1, 165–173 (2010)

    Article  Google Scholar 

  18. J. Di, R. Yigit, C.G. Figdor, T. Duiveman-de Boer, L.F.A.G. Massuger, R. Torensma, Expression compilation of several putative cancer stem cell markers by primary ovarian carvinoma. J. Cancer Ther. 1, 165–173 (2010)

    Article  Google Scholar 

  19. S.M. Dieter, C.R. Ball, C.M. Hoffmann et al., Distinct types of tumor-initiating cells from human colon cancer tumors and metastases. Cell Stem Cell 9, 357–365 (2011)

    Article  PubMed  CAS  Google Scholar 

  20. J. Dong, S. Sutor, G. Jiang, Y. Cao, Y.W. Asmann, D.A. Wigle, c-Myc regulates self-renewal in bronchoalveolar stem cells. PLoS One 6, e23707 (2011)

    Article  PubMed  CAS  Google Scholar 

  21. D. Fang, T.K. Nguyen, K. Leishear et al., A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 65, 9328–9337 (2005)

    Article  PubMed  CAS  Google Scholar 

  22. G. Ferrandina, E. Martinelli, M. Petrillo et al., CD133 antigen expression in ovarian cancer. BMC Cancer 9, 221 (2009)

    Article  PubMed  Google Scholar 

  23. M.Y. Fong, S.S. Kakar, The role of cancer stem cells and the side population in epithelial ovarian cancer. Histol. Histopathol. 25, 113–120 (2010)

    PubMed  CAS  Google Scholar 

  24. S.J. Forbes, P. Vig, R. Poulsom, N.A. Wright, M.R. Alison, Adult stem cell plasticity: new pathways of tissue regeneration become visible. Clin. Sci. (Lond.) 103, 355–369 (2002)

    CAS  Google Scholar 

  25. N.Y. Frank, T. Schatton, M.H. Frank, The therapeutic promise of the cancer stem cell concept. J. Clin. Invest. 120, 41–50 (2010)

    Article  PubMed  CAS  Google Scholar 

  26. M.Q. Gao, Y.P. Choi, S. Kang, J.H. Youn, N.H. Cho, CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 29, 2672–2680 (2010)

    Article  PubMed  CAS  Google Scholar 

  27. C. Ginestier, M.H. Hur, E. Charafe-Jauffret et al., ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007)

    Article  PubMed  CAS  Google Scholar 

  28. S. Han, L. Li, X. Jia et al., A molecular beacon-based method for screening cervical cancer. J. Nanosci. Nanotechnol. 12, 8282–8286 (2012)

    Article  PubMed  CAS  Google Scholar 

  29. K. He, T. Xu, A. Goldkorn, Cancer cells cyclically lose and regain drug-resistant highly tumorigenic features characteristic of a cancer stem-like phenotype. Mol. Cancer Ther. 10, 938–948 (2011)

    Article  PubMed  CAS  Google Scholar 

  30. Y. Hu, L. Fu, Targeting cancer stem cells: a new therapy to cure cancer patients. Am. J. Cancer Res. 2, 340–356 (2012)

    PubMed  Google Scholar 

  31. A. Jewett, H.C. Tseng, A. Arasteh, S. Saadat, R.E. Christensen, N.A. Cacalano, Natural killer cells preferentially target cancer stem cells; role of monocytes in protection against NK cell mediated lysis of cancer stem cells. Curr. Drug Deliv. 9, 5–16 (2012)

    Article  PubMed  CAS  Google Scholar 

  32. L. Lacerda, L. Pusztai, W.A. Woodward, The role of tumor initiating cells in drug resistance of breast cancer: Implications for future therapeutic approaches. Drug Resist. Updat. 13, 99–108 (2010)

    Article  PubMed  CAS  Google Scholar 

  33. C.N. Landen Jr., B. Goodman, A.A. Katre et al., Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol. Cancer Ther. 9, 3186–3199 (2010)

    Article  PubMed  CAS  Google Scholar 

  34. J. Lee, H.K. Kim, J.Y. Rho, Y.M. Han, J. Kim, The human OCT-4 isoforms differ in their ability to confer self-renewal. J. Biol. Chem. 281, 33554–33565 (2006)

    Article  PubMed  CAS  Google Scholar 

  35. S. Liedtke, M. Stephan, G. Kogler, Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biol. Chem. 389, 845–850 (2008)

    Article  PubMed  CAS  Google Scholar 

  36. L.H. Looijenga, H. Stoop, H.P. de Leeuw et al., POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res. 63, 2244–2250 (2003)

    PubMed  CAS  Google Scholar 

  37. J.A. McCubrey, L.S. Steelman, S.L. Abrams et al., Targeting the cancer initiating cell: the ultimate target for cancer therapy. Curr. Pharm. Des. 18, 1784–1795 (2012)

    Article  PubMed  CAS  Google Scholar 

  38. S.P. Medvedev, A.I. Shevchenko, N.A. Mazurok, S.M. Zakiian, OCT4 and NANOG are the key genes in the system of pluripotency maintenance in mammalian cells. Genetika 44, 1589–1608 (2008)

    PubMed  CAS  Google Scholar 

  39. K. Mitsui, Y. Tokuzawa, H. Itoh et al., The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003)

    Article  PubMed  CAS  Google Scholar 

  40. M. Monk, C. Holding, Human embryonic genes re-expressed in cancer cells. Oncogene 20, 8085–8091 (2001)

    Article  PubMed  CAS  Google Scholar 

  41. G. Mor, G. Yin, I. Chefetz, Y. Yang, A. Alvero, Ovarian cancer stem cells and inflammation. Cancer Biol. Ther. 11, 708–713 (2011)

    Article  PubMed  Google Scholar 

  42. K.H. Noh, B.W. Kim, K.-H. Song et al., Nanog signaling in cancer promotes stem-like phenotype and immune evasion. J. Clin. Invest. 122, 4077–4093 (2012)

    Article  PubMed  CAS  Google Scholar 

  43. G. Pan, B. Qin, N. Liu, H.R. Scholer, D. Pei, Identification of a nuclear localization signal in OCT4 and generation of a dominant negative mutant by its ablation. J. Biol. Chem. 279, 37013–37020 (2004)

    Article  PubMed  CAS  Google Scholar 

  44. T. Peng, M. Qinghua, T. Zhenning, W. Kaifa, J. Jun, Long-term sphere culture cannot maintain a high ratio of cancer stem cells: a mathematical model and experiment. PLoS One 6, e25518 (2011)

    Article  PubMed  Google Scholar 

  45. E. Quintana, M. Shackleton, H.R. Foster et al., Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18, 510–523 (2010)

    Article  PubMed  CAS  Google Scholar 

  46. Z. Rasheed, Q. Wang, W. Matsui, Isolation of stem cells from human pancreatic cancer xenografts. J. Vis. Exp. 43, 2169 (2010)

    PubMed  Google Scholar 

  47. B.A. Reynolds, S. Weiss, Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175, 1–13 (1996)

    Article  PubMed  CAS  Google Scholar 

  48. A. Roesch, M. Fukunaga-Kalabis, E.C. Schmidt et al., A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141, 583–594 (2010)

    Article  PubMed  CAS  Google Scholar 

  49. P. Santangelo, N. Nitin, G. Bao, Nanostructured probes for RNA detection in living cells. Ann. Biomed. Eng. 34, 39–50 (2006)

    Article  PubMed  Google Scholar 

  50. Y. Shi, P.J. Frost, B.Q. Hoang et al., IL-6-induced stimulation of c-myc translation in multiple myeloma cells is mediated by myc internal ribosome entry site function and the RNA-binding protein, hnRNP A1. Cancer Res. 68, 10215–10222 (2008)

    Article  PubMed  CAS  Google Scholar 

  51. S.V. Shmelkov, J.M. Butler, A.T. Hooper et al., CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J. Clin. Invest. 118, 2111–2120 (2008)

    PubMed  CAS  Google Scholar 

  52. I.A. Silva, S. Bai, K. McLean et al., Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 71, 3991–4001 (2011)

    Article  PubMed  CAS  Google Scholar 

  53. S.K. Singh, I.D. Clarke, M. Terasaki et al., Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003)

    PubMed  CAS  Google Scholar 

  54. J.M. Stewart, P.A. Shaw, C. Gedye, M.Q. Bernardini, B.G. Neel, L.E. Ailles, Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proc. Natl. Acad. Sci. U. S. A. 108, 6468–6473 (2011)

    Article  PubMed  CAS  Google Scholar 

  55. R. Strauss, Z.Y. Li, Y. Liu et al., Analysis of epithelial and mesenchymal markers in ovarian cancer reveals phenotypic heterogeneity and plasticity. PLoS One 6, e16186 (2011)

    Article  PubMed  CAS  Google Scholar 

  56. G. Suo, J. Han, X. Wang, J. Zhang, Y. Zhao, J. Dai, Oct4 pseudogenes are transcribed in cancers. Biochem. Biophys. Res. Commun. 337, 1047–1051 (2005)

    Article  PubMed  CAS  Google Scholar 

  57. P.P. Szotek, R. Pieretti-Vanmarcke, P.T. Masiakos et al., Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc. Natl. Acad. Sci. U. S. A. 103, 11154–11159 (2006)

    Article  PubMed  CAS  Google Scholar 

  58. M.H. Tai, C.C. Chang, M. Kiupel, J.D. Webster, L.K. Olson, J.E. Trosko, Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26, 495–502 (2005)

    Article  PubMed  CAS  Google Scholar 

  59. K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)

    Article  PubMed  CAS  Google Scholar 

  60. N.V. Varlakhanova, R.F. Cotterman, W.N. deVries et al., Myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation 80, 9–19 (2010)

    Article  PubMed  CAS  Google Scholar 

  61. V. Vathipadiekal, D. Saxena, S.C. Mok, P.V. Hauschka, L. Ozbun, M.J. Birrer, Identification of a Potential Ovarian Cancer Stem Cell Gene Expression Profile from Advanced Stage Papillary Serous Ovarian Cancer. PLoS One 7, e29079 (2012)

    Article  PubMed  CAS  Google Scholar 

  62. J.E. Visvader, G.J. Lindeman, Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10, 717–728 (2012)

    Article  PubMed  CAS  Google Scholar 

  63. J. Wang, D.N. Levasseur, S.H. Orkin, Requirement of Nanog dimerization for stem cell self-renewal and pluripotency. Proc. Natl. Acad. Sci. U. S. A. 105, 6326–6331 (2008)

    Article  PubMed  CAS  Google Scholar 

  64. J. Watson, Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol. 3, 120144 (2013)

    Article  PubMed  Google Scholar 

  65. R. Yigit, C.G. Figdor, P.L. Zusterzeel, J.M. Pots, R. Torensma, L.F. Massuger, Cytokine analysis as a tool to understand tumour-host interaction in ovarian cancer. Eur. J. Cancer 47, 1883–1889 (2011)

    Article  PubMed  CAS  Google Scholar 

  66. S. Zhang, C. Balch, M.W. Chan et al., Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 68, 4311–4320 (2008)

    Article  PubMed  CAS  Google Scholar 

  67. S. Zhao, Q. Yuan, H. Hao et al., Expression of OCT4 pseudogenes in human tumours: lessons from glioma and breast carcinoma. J. Pathol. 223, 672–682 (2011)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Dutch government to the Netherlands Institute for Regenerative Medicine (NIRM, grant No. FES0908).

Conflict of interest

All authors declare no financial disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruurd Torensma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di, J., Duiveman-de Boer, T., Zusterzeel, P.L.M. et al. The stem cell markers Oct4A, Nanog and c-Myc are expressed in ascites cells and tumor tissue of ovarian cancer patients. Cell Oncol. 36, 363–374 (2013). https://doi.org/10.1007/s13402-013-0142-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-013-0142-8

Keywords

Navigation