Skip to main content
Log in

Self-assembled monolayer modified MoO3/Au/MoO3 multilayer anodes for high performance OLEDs

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We control the work function and the surface energy of the MoO3/Au/MoO3 (MAM) anode of OLEDs by modifying the top MoO3 layer via vapor phase deposition. The performance and stability of the device are significantly altered depending on the dipole direction of the selfassembled monolayer (SAM) with permanent dipole moment inserted between N,N′-Bis(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine (NPB) film and a MAM anode as well as on the interfacial wetting between the SAM and NPB layer. A CF3-terminated monolayer on a MAM electrode improved the performance and stability of the OLEDs relative to a reference device with only a MAM electrode, demonstrating that coating with SAMs via vapor phase deposition is an effective method to engineer the interface of MAM electrode optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Forrest, Nature 42, 911 (2004).

    Article  Google Scholar 

  2. C. D. Williams, R. O. Robles, M. Zhang, S. Li, R. H. Baughman, and A. A. Zakhidov, Appl. Phys. Lett. 93, 183506 (2008).

    Article  Google Scholar 

  3. M. Fahland, P. Karlsson, and C. Charton, Thin Solid Films 392, 334 (2001).

    Article  Google Scholar 

  4. Y. Zhao, J. Zhang, S. Liu, Y. Gao, X. Yang, K. S. Leck, A. P. Abiyasa, Y. Divayana, E. Mutlugun, S. T. Tan, Q. Xiong, H. V. Demir, and X. W. Sun, Org. Electron. 15, 871 (2014).

    Article  Google Scholar 

  5. M. Zadsar, H. R. Fallah, M. H. Mahmoodzadeh, and S. V. Tabatabaei, J. Lumin. 132, 992 (2012).

  6. K.-H. Choi, H.-J. Nam, J.-A. Jeong, S.-W. Cho, H.-K. Kim, J.-W. Kang, D.-G. Kim, and W.-J. Cho, Appl. Phys. Lett. 92, 223302 (2008).

    Article  Google Scholar 

  7. J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. Temple, Appl. Phys. Lett. 85, 3450 (2004).

    Article  Google Scholar 

  8. Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang, Z. W. Liu, and Z. H. Lu, Nature Photon. 5, 753 (2011).

    Article  Google Scholar 

  9. B. Tian, G. Williams, D. Ban, and H. Aziz, J. Appl. Phys. 110, 104507 (2011).

    Article  Google Scholar 

  10. E. Wrzesniewski, S.-H. Eom, W. T. Hammond, W. Cao, and J. Xue, J. Photon. Energy 1, 011023 (2011).

    Article  Google Scholar 

  11. M. Kim, C. Lim, D. Jeong, H.-S. Nam, J. Kim, and J. Lee, Org. Electron. 36, 61 (2016).

    Article  Google Scholar 

  12. Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, and A. J. Heeger, Adv. Mater. 23, 2226 (2011).

    Article  Google Scholar 

  13. M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, Appl. Phys. Lett. 95, 123301 (2009).

    Article  Google Scholar 

  14. J. Meyer, R. Khalandovsky, P. Görrn, and A. Kahn, Adv. Mater. 23, 70 (2011).

    Article  Google Scholar 

  15. Y. Guo and J. Robertson, Appl. Phys. Lett. 105, 222110 (2014).

    Article  Google Scholar 

  16. M. T. Greiner, M. G. Helander, Z. B. Wang, W. M. Tang, J. Qiu, and Z. H. Lu, Appl. Phys. Lett. 96, 213302 (2010).

    Article  Google Scholar 

  17. S. Tokito, K. Noda, and Y. Taga, J. Phys. D: Appl. Phys. 29, 2750 (1996).

    Article  Google Scholar 

  18. M. Vasilopoulou, L. C. Palilis, D. G. Georgiadou, S. Kennou, I. Kostis, D. Davazoglou, and P. Argitis, Appl. Phys. Lett. 100, 013311 (2012).

    Article  Google Scholar 

  19. J. Bullock, A. Cuevas, T. Allen, and C. Battaglia, Appl. Phys. Lett. 105, 232109 (2014).

    Article  Google Scholar 

  20. C. Wang, I. Irfan, and Y. Gao, Appl. Phys. Lett. 105, 181602 (2014).

    Article  Google Scholar 

  21. H. Ding, Y. Gao, C. Small, D. Y. Kim, J. Subbiah, and F. So, Appl. Phys. Lett. 96, 243307 (2010).

    Article  Google Scholar 

  22. I. Irfan, A. J. Turinske, Z. Bao, and Y. Gao, Appl. Phys. Lett. 101, 093305 (2012).

    Article  Google Scholar 

  23. X. Liu, C. Wang, Irfan, S. Yi, and Y. Gao, Org. Electron. 15, 977 (2014).

    Article  Google Scholar 

  24. S. J. Lee, J. R. Koo, H. W. Lee, S. E. Lee, H. J. Yang, S. S. Yoon, J. Park, and Y. K. Kim, Electron. Mater. Lett. 10, 1127 (2014).

    Article  Google Scholar 

  25. Z. Deng, Z. Lü, D. Xu, J. Xiao, and Y. Wang, Solid State Electron. 76, 25 (2012).

    Article  Google Scholar 

  26. J. Kim, C. K. Suman, S. Noh, and C. Lee, Displays 31, 139 (2010).

    Article  Google Scholar 

  27. K. Yase, Y. Yoshida S. Sumimoto, N. Tanigaki, H. Matsuda, and M. Kato, Thin Solid Films 273, 218 (1996).

    Article  Google Scholar 

  28. P. F. Smith, P. Gerroir, S. Xie, A. M. Hor, and Z. Popovic, Langmuir 14, 5946 (1998).

    Article  Google Scholar 

  29. J. Cui, Q. Huang, J. C. G. Veinot, H. Yan, Q. Wang, G. R. Hutchison, A. G. Richter, G. Evmenenko, P. Dutta, and T. J. Marks, Langmuir 18, 9958 (2002).

    Article  Google Scholar 

  30. K. Yase, M. Yamanaka, K. Mimura, S. Ueno, and K. Sato, Thin Solid Films 243, 389 (1994).

    Article  Google Scholar 

  31. S. Goncalves-Conto, M. Carrard, L. Si-Ahmed, and L. Zuppiroli, Adv. Mater. 11, 112 (1999).

    Article  Google Scholar 

  32. J. E. Malinsky, G. E. Jabbour, S. E. Shaheen, J. D. Anderson, A. G. Richter, T. J. Marks, N. R. Armstrong, B. Kippelen, P. Dutta, and N. Peyghambarian, Adv. Mater. 11, 227 (1999).

    Article  Google Scholar 

  33. F. Nüesch, F. Rotzinger, L. Si-Ahmed, and L. Zuppiroli, Chem. Phys. Lett. 288, 861 (1998).

    Article  Google Scholar 

  34. S. F. J. Appleyard, S. R. Day, R. D. Pickford, and M. R. Willis, J. Mater. Chem. 10, 169 (2000).

    Article  Google Scholar 

  35. H.-L. Yip, S. K. Hau, N. S. Baek, and A. K.-Y. Jen, Appl. Phys. Lett. 92, 193313 (2008).

    Article  Google Scholar 

  36. S. Khodabakhsh, D. Poplavskyy, S. Heutz, J. Nelson, D. D. C. Bradley, H. Murata, and T. S. Jones, Adv. Funct. Mater. 14, 1205 (2004).

    Article  Google Scholar 

  37. X. Bulliard, S.-G. Ihn, S. Yun, Y. Kim, D. Choi, J.-Y. Choi, M. Kim, M. Sim, J.-H. Park, W. Choi, and K. Cho, Adv. Funct. Mater. 20, 4381 (2010).

    Article  Google Scholar 

  38. B. de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh, and P. W. M. Blom, Adv. Mater. 17, 621 (2005).

    Article  Google Scholar 

  39. S. Khodabakhsh, B. M. Sanderson, J. Nelson, and T. S. Jones, Adv. Funct. Mater. 16, 95 (2006).

    Article  Google Scholar 

  40. C. Ganzorig, K.-J. Kwak, K. Yagi, and M. Fujihira, Appl. Phys. Lett. 79, 272 (2001).

    Article  Google Scholar 

  41. J.-P. Hong, A.-Y. Park, S. Lee, J. Kang, N. Shin, and D. Y. Yoon, Appl. Phys. Lett. 92, 143311 (2006).

    Article  Google Scholar 

  42. L. Zuppiroli, L. Si-Ahmed, K. Kamaras, F. Nüesch, M. N. Bussac, D. Ades, A. Siove, E. Moons, and M. Grätzel, Eur. Phys. J. B 11, 505 (1999).

    Article  Google Scholar 

  43. G. Wang, T.-W. Kim, H. Lee, and T. Lee, Phys. Rev. B 76, 205320 (2007).

    Article  Google Scholar 

  44. M. A. Rahman, J. S. Han, K. Jeong, H.-S. Nam, and J. Lee, Electron. Mater. Lett. 10, 671 (2014).

    Article  Google Scholar 

  45. I. H. Campbell, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, Appl. Phys. Lett. 71, 3528 (1997).

    Article  Google Scholar 

  46. A. Hozumi, K. Ushiyama, H. Sugimura, and O. Takai, Langmuir 15, 7600 (1999).

    Article  Google Scholar 

  47. M. Bruening, E. Moons, D. Yaron-Marcovich, D. Cahen, J. Libman, and A. Shanzer, J. Am. Chem. Soc. 116, 2972 (1994).

    Article  Google Scholar 

  48. C. Goh, S. R. Scully, and M. D. McGehee, J. Appl. Phys. 101, 114503 (2007).

    Article  Google Scholar 

  49. S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, and E. Garrone, J. Colloid Interface Sci. 321, 235 (2008).

    Article  Google Scholar 

  50. F. Zhang, K. Sautter, A. M. Larsen, D. A. Findley, R. C. Davis, H. Samha, and M. R. Linford, Langmuir 26, 14648 (2010).

    Article  Google Scholar 

  51. H.-G. Hong, M. Jiang, S. G. Sligar, and P. W. Bohn, Langmuir 10, 153 (1994).

    Article  Google Scholar 

  52. G. Ledung, M. Bergkvist, A. P. Quist, U. Gelius, J. Carlsson, and S. Oscarsson, Langmuir 17, 6056 (2001).

    Article  Google Scholar 

  53. H. Sugimura, A. Hozumi, T. Kameyama, and O. Takai, Surf. Interface Anal. 34, 550 (2002).

    Article  Google Scholar 

  54. X. Song, J. Zhai, Y. Wang, and L. Jiang, J. Colloid Interface Sci. 298, 267 (2006).

    Article  Google Scholar 

  55. G. Saini, K. Sautter, F. E. Hild, J. Pauley, and M. R. Linford, J. Vac. Sci. Technol. A 26, 1224 (2008).

    Article  Google Scholar 

  56. A. Hozumi, Y. Yokogawa, T. Kameyama, H. Sugimura, K. Hayashi, H. Shirayama, and O. Takai, J. Vac. Sci. Technol. A 19, 1812 (2001).

    Article  Google Scholar 

  57. R. Abdur, J. Lim, K. Jeong, M. A. Rahman, J. Kim, and J. Lee, Electron. Mater. Lett. 12, 197 (2016).

    Article  Google Scholar 

  58. M. S. Go, J.-M. Song, C. Kim, J. Lee, J. Kim, and M. J. Lee, Electron. Mater. Lett. 11, 252 (2015).

    Article  Google Scholar 

  59. D. Kowalczyk, S. Slomkowski, M. M. Chehimi, and M. Delamar, Int. J. Adhes. Adhes. 16, 227 (1996).

    Article  Google Scholar 

  60. A. Heise, H. Menzel, H. Yim, M. D. Foster, R. H. Wieringa, A. J. Schouten, V. Erb, and M. Stamm, Langmuir 13, 723 (1997).

    Article  Google Scholar 

  61. E. Metwalli, D. Haines, O. Becker, S. Conzone, and C. G. Pantano, J. Colloid Interface Sci. 298, 825 (2006).

    Article  Google Scholar 

  62. G.-Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S.-Y. Wang, W. M. Tong, and R. S. Williams, Langmuir 21, 1158 (2005).

    Article  Google Scholar 

  63. Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, J. Micromech. Microeng. 16, 259 (2006).

    Article  Google Scholar 

  64. P. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).

    Article  Google Scholar 

  65. H. Metiu, S. Chrétien, Z. Hu, B. Li, and X. Y. Sun, J. Phys. Chem. C 116, 10439 (2012).

    Article  Google Scholar 

  66. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci. 13, 1741 (1969).

    Article  Google Scholar 

  67. T. Osaka, M. Datta, and Y. Shacham-Diamand, Electrochemical Nanotechnologies, p. 133, Springer, New York, USA (2010).

    Book  Google Scholar 

  68. I. H. Campbell, S. Rubin, T. A. Zawodzinski, J. D. Kress, R. L. Martin, and D. L. Smith, Phys. Rev. B 54, 14321 (1996).

    Article  Google Scholar 

  69. R. N. Marks, D. D. C. Bradley, R. W. Jackson, P. L. Burn, and A. B. Holmes, Synth. Met. 55, 4128 (1993).

    Article  Google Scholar 

  70. C. C. Wu, J. K. M. Chun, P. E. Burrows, J. C. Sturm, M. E. Thompson, S. R. Forrest, and R. A. Register, Appl. Phys. Lett. 66, 653 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyeong-Sik Min or Jaegab Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, D., Lim, C., Kim, M. et al. Self-assembled monolayer modified MoO3/Au/MoO3 multilayer anodes for high performance OLEDs. Electron. Mater. Lett. 13, 16–24 (2017). https://doi.org/10.1007/s13391-017-6381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6381-5

Keywords

Navigation