Skip to main content
Log in

A new field-assisted annealing approach for advanced Cu-Zr Alloy metallization

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

A new field-assisted annealing approach for Cu-Zr alloy metallization is proposed and investigated. Cu-Zr/SiO2/Si samples were vacuum-annealed at pressure of 2 × 10−3 Pa with (−20 V) and without field-assisted annealing for an hour in 250°C–400°C temperature range. Based on the XRD, TEM, XPS, and resistivity measurement results, we conclude that the dragging force for Zr atoms in field-assisted annealing samples to the interface shall be larger than that of samples without field-assisted annealing. As a consequence, by low concentration alloy atoms adding and FAA processing, the low Cu alloy film resistivity and thin self-forming barrier layer can be simultaneously obtained at lower temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Chang, C. M. Chieh, Thin Solid Films 335, 146 (1998).

    Article  Google Scholar 

  2. Y. W. Luh, W. W. Fa, L. D. Gey, W. C. Chang, and O. K. Liang, Solid-State Electron. 45, 149 (2001).

    Article  Google Scholar 

  3. L. K. Maung, Y. K. Lee, Li, S. T. Osipowicz, and H. L. Seng, Mater. Sci. & Eng.: B 84, 217 (2001).

    Article  Google Scholar 

  4. P. J. Ding, W. A. Lanford, S. Hymes, and S. P. Murarka, J. Appl. Phys. 75, 3627 (1994).

    Article  CAS  Google Scholar 

  5. P. J. Ding, W. A. Lanford, S. Hymes, and S. P. Murarka, Appl. Phys. Lett. 64, 2897 (1994).

    Article  CAS  Google Scholar 

  6. C. J. Liu and J. S. Chen, Appl. Phys. Lett. 80, 2678 (2002).

    Article  CAS  Google Scholar 

  7. M. Haneda, J. Iijima, and J. Koike, Appl. Phys. Lett. 90, 252107 (2007).

    Article  Google Scholar 

  8. J. P. Chu, C. H. Lin, and V. S. John, Appl. Phys. Lett. 91, 132109 (2007).

    Article  Google Scholar 

  9. J. Koike, M. Haneda, J. Iijima, Y. Otsuka, H. Sako, and K. Neishi, J. Appl. Phys. 102, 043527 (2007).

    Article  Google Scholar 

  10. J. Koike and M. Wada, Appl. Phys. Lett. 87, 041911 (2005).

    Article  Google Scholar 

  11. J. P. Chu and C. H. Lin, Appl. Phys. Lett. 87, 211902 (2005).

    Article  Google Scholar 

  12. S. Tsukimoto, T. Kabe, K. Ito, and M. Murakami, J. Electron. Mater. 36, 258 (2007).

    Article  CAS  Google Scholar 

  13. J. S. Fang and H. Y. Hsieh, J. Electron. Mater. 36, 129 (2007).

    Article  CAS  Google Scholar 

  14. K. Barmak and G. A. Lucadamo, J. Appl. Phys. 87, 2204 (2000).

    Article  CAS  Google Scholar 

  15. A. Gungor, K. Barmak, A. D. Rollett, C. Cabral Jr., and J. M. E. Harper, J. Vac. Sci. Technol. B 20, 2314 (2002).

    Google Scholar 

  16. K. Barmak, A. Gungor, C. Cabral Jr., and J. M. E. Harper, J. Appl. Phys. 94, 1605 (2003).

    Article  CAS  Google Scholar 

  17. D. Majumdar and D. Chatterjee, J. Appl. Phys. 70, 988 (1991).

    Article  CAS  Google Scholar 

  18. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy p. 108, Physical Electronics, MN (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Cao, F. & Zhang, Ml. A new field-assisted annealing approach for advanced Cu-Zr Alloy metallization. Electron. Mater. Lett. 8, 507–510 (2012). https://doi.org/10.1007/s13391-012-2065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2065-3

Keywords

Navigation