Skip to main content
Log in

Growth and characterization of pulse electrodeposited CuInSe2 thin films

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

CuInSe2 thin films were grown on SnO2-coated glass substrates using the pulse electrodeposition (PED) technique. The CuInSe2 films were grown at different potentials using pulses of different frequencies ranging from 1 KHz to 1 MHz. The electrodeposited films were annealed in vacuum at 300°C, for 1 hr, to improve the crystallinity. The annealed films were characterized by x-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Analysis of x-rays (EDAX), and UV-VIS-NIR spectra. The results show that the electrodeposited CuInSe2 films have good stoichiometry and are single phase with an optical gap around 1 eV. SEM studies show that the films grown using pulses of frequency 1 KHz contain nanoparticles of size 50–60 nm, whereas those grown using pulses of frequency 100 KHz and 1 MHz contain micronsized particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Kundu, M. Basu, S. Chaudhuri, and A. K. Pal, Thin Solid Films 339, 44 (1999).

    Article  CAS  Google Scholar 

  2. B. Eisener, M. Wagner, D. Wolf, and G. Muller, J. Cryst. Growth. 198, 321 (1999).

    Article  Google Scholar 

  3. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Progress in Photovoltaics: Research and Applications, 19, 894 (2011).

    Article  CAS  Google Scholar 

  4. M. D. Kannan, R. Balasundaraprabhu, S. Jayakumar, and P. Ramanathaswamy, Sol. Energy Mater. Sol. Cells. 81, 379 (2004).

    Article  CAS  Google Scholar 

  5. S. Isomura, S. Shirakata, and T. Abe, Sol. Energy Mater. 22, 223 (1991).

    Article  CAS  Google Scholar 

  6. H. Sakata and H. Ogawa, Sol. Energy Mater Sol. Cells. 63, 259 (2000).

    Article  CAS  Google Scholar 

  7. T. Yamaguchi, J. Matsufusa, H. Kabasawa, and A. Yoshida, J. Appl. Phys. 69, 7714 (1991).

    Article  CAS  Google Scholar 

  8. I. Martil, J. Santamaria, E. Iborra, G. Gonzalez-Diaz, and F. Sanchez-Quesada, J. Appl. Phys. 62, 4163 (1987).

    Article  CAS  Google Scholar 

  9. T. Terasako, Y. Uno, T. Kariya, and S. Shirakata, Sol. Energy Mater Sol. Cells. 90, 262 (2006).

    Article  CAS  Google Scholar 

  10. B. J. Brown, C. W. Bates, and O. Hewlett, J. Appl. Phys. 68, 2517 (1990).

    Article  CAS  Google Scholar 

  11. V. K. Kapur, B. M. Basol, and E. S. Tseng, Solar Cells 21, 65 (1987).

    Article  CAS  Google Scholar 

  12. G. Hodes, T. Engelhard, and D. Cahen, Thin Solid Films 128, 93 (1985).

    Article  CAS  Google Scholar 

  13. T. L. Chu, S. S. Chu, S. C. Lin, and J. Yue, J. Electrochem. Soc. 131, 2182 (1984).

    Article  CAS  Google Scholar 

  14. C. D. Lokhande and G. Hodes, Solar Cells 21, 215 (1987).

    Article  CAS  Google Scholar 

  15. G. Hodes and D Cahen, Solar Cells 16, 245 (1986).

    Article  CAS  Google Scholar 

  16. C. J. Huang, T. H. Meen, M. Y. Lai, and W. R. Chen, Sol. Energy Mater. Sol. Cells 82, 553 (2004).

    CAS  Google Scholar 

  17. K. T. L. De Silva, W. A. A. Priyantha, J. K. D. S. Jayanetti, B. D. Chithrani, W. SiriPala, K. Blake, and I. M. Dharmadasa, Thin Solid Films 382, 158 (2001).

    Article  Google Scholar 

  18. I. M. Dharmadasa, R. P. Burton, and M. Simmonds, Sol. Energy Mater Sol. Cells 90, 2191 (2006).

    Article  CAS  Google Scholar 

  19. L. Kaupmees, M. Altosaar, O. Volubujeva, and E. Mellikov, Thin Solid Films 515, 5891 (2007).

    Article  CAS  Google Scholar 

  20. S. Nomura, K. Nishiyama, K. Tanaka, M. Sakakibara, M. Ohtsubo, M. Furutani, and S. Endo, Jpn J. Appl. Phys. 37, 3232 (1998).

    Article  CAS  Google Scholar 

  21. L. I. U. Fang-yang, L. U. Ying, Zhi-an Zhang, L. A. I. Yanqing, L. I. Jie, and L. I. U. Ye-xiang, Trans. Nonferrous Met. Soc. China 18, 884 (2008).

    Article  Google Scholar 

  22. T. Edamura and J. Muto, J. Mater. Sci.: Mater. Electr. 5, 275 (1994).

    Article  CAS  Google Scholar 

  23. S. Endo, Y. Nagahori, and S. Nomura, Jpn J. Appl. Phys. 85, 1101 (1996).

    Google Scholar 

  24. N. P. Klochko, J. Functional Mater. 14, 343 (2007).

    CAS  Google Scholar 

  25. M. Boumerzoug and H. Le. Dao, J Mater. Sci.: Mater. Electr. 1, 123 (1990).

    Article  CAS  Google Scholar 

  26. H. Karami and M. Alipour, Int. J. Electrochem. Sci. 4, 1511 (2009).

    CAS  Google Scholar 

  27. V. Kumar, S. K. Sharma, T. P. Sharma, and V. Singh, Opt. Mater. 12, 115 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dixit Prasher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasher, D., Rajaram, P. Growth and characterization of pulse electrodeposited CuInSe2 thin films. Electron. Mater. Lett. 8, 515–518 (2012). https://doi.org/10.1007/s13391-012-2061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2061-7

Keywords

Navigation