Skip to main content
Log in

A class of subspaces of Morrey spaces and norm inequalities on Riesz potential operators

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

We introduce two classes of Banach spaces \(F(q,p,\alpha )\) and \(T^{p,\;\alpha }\) (\(1\le q\le \alpha \le p\le \infty \)) which are subspaces of Herz spaces and Morrey spaces of functions and measures respectively. We study the Riesz potential operators in these spaces and obtain norm inequalities on these operators from which we deduce a necessary condition for a nonnegative Radon measure to have its Riesz potential in a given Lebesgue space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R., Hedberg, L.I.: Function spaces and potential theory, Grundlehren der mathematischen Wissenschaften, vol. 314. Springer, London, Berlin, Heidelberg, New York (1996)

    Book  Google Scholar 

  2. Burenkov, V.I., Guliyev, V.S.: Necessary and sufficient conditions for the boundedness of the Riesz potential in Local Morrey-type spaces. Potential Anal. 30, 211–249 (2009). doi:10.1007/s11118-008-9113-5

    Article  MATH  MathSciNet  Google Scholar 

  3. Chinillo, S., Wheeden, R.L.: \(L^{p}\) estimates for fractionals integrals and Sobolev inequalities with applications to Schrödinger operator. Commun. Partial Differ. Equ. 10(9), 1077–1116 (1985)

    Article  Google Scholar 

  4. Douyon, D., Fofana, I.: A Sobolev inequality for functions with locally bounded variation in \(\mathbb{R}^{d}\). Ann. Math. Afr. Sér. 1 1, 49–67 (2010)

    MATH  MathSciNet  Google Scholar 

  5. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. CRC Press, Boca Raton (1992)

  6. Feuto, J., Fofana, I., Koua, K.: Weigthed norm inequalities for a maximal operator in some subspace of amalgams. Canad. Math. Bull. 53(2), 263–277 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fofana, I.: Etude d’une classe d’espaces de fonctions contenant les espaces de Lorentz. Afrika Mat. (2) 1, 29–50 (1988)

    MATH  MathSciNet  Google Scholar 

  8. Fofana, I.: Continuité de l’intégrale fractionnaire et espaces \((L^{q}, l^{p})^{\alpha }\), C.R.A.S. Paris, t.308, Série I, 525–527 (1989)

  9. Fofana, I.: Espace \((L^{q}, l^{p})^{\alpha }(R^{d}; n)\) : espace de fonctions à moyenne fractionnaire intégrables, Thèse d’Etat es-Sciences; Université de Cocody (1995). http://greenstone.refer.bf/collect/thef/index/assoc/HASH6a39.dir/CSe02767

  10. Fofana, I.: Espace \((L^{q}, l^{p})^{\alpha }\) et continuité de l’opérateur maximal fractionnaire de Hardy–Littlewood. Afrika Mat. Sér. 3 12, 23–37 (2001)

    MATH  MathSciNet  Google Scholar 

  11. Fofana, I., Kpata, B.A., Douyon, D.: Some properties of Radon measures having their Riesz potential in a Lebesgue space, preprint (2011)

  12. Grafakos, L.: Classical and modern Fourier analysis. Pearson Education, Inc., NJ, USA (2004)

  13. Garcià-Cuerva, J., Gatto, A.E.: Boundedness properties of fractional integral operators associated to non-doubling measures, Studia Math. 162(3), 245–261 (2004)

    Google Scholar 

  14. Giga, Y., Miyagawa, T.: Navier-Stokes flow in \(\mathbb{R}^{3}\) with measures as initial vorticity and Morrey spaces. Commun. Partial Differ. Equ. 14(5), 577–618 (1989)

    Article  MATH  Google Scholar 

  15. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis II. Springer, Berlin (1970)

    MATH  Google Scholar 

  16. Kikuchi, N., Nakai, E., Tomita, N., Yabuta, K., Yoneda, T.: Calderón-Zygmund operators on amalgam spaces and in the discrete case. J. Math. Anal. Appl. 335(1), 198–212 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kpata, B.A., Fofana, I., Koua, K.: Necessary condition for measures which are \((L^{q}, l^{p})\) multipliers. Ann. Math. Blaise Pascal 16(2), 339–353 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Muckenhoupt, B., Wheeden, R.L.: Weighted norm inequalities for classical operators. Trans. Am. Math. Soc. 192, 261–277 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nakai, E.: Hardy-Littlewood maximal operator, singular integral operutors and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–103 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nakai, E.: Recent topics of fractional integral, Sugaku Expositions. Am. Math. Soc. 20(2), 215–235 (2007)

    MATH  MathSciNet  Google Scholar 

  21. Phuc, N.C., Torres, M.: Characterizations of the existence and removable singularities of divergence-measure vector fields. Indiana Univ. Math. J. 57(4), 1573–1597 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sawyer, E.T., Wheeden, R.L.: Weighted inequalities of fractional integrals on euclidean and homogeneous spaces. Am. J. Math. 114, 813–874 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Stein, E.M.: Singular integrals and Differentiability Properties of functions. Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the referees for their very valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falé Roland Faléa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fofana, I., Faléa, F.R. & Kpata, B.A. A class of subspaces of Morrey spaces and norm inequalities on Riesz potential operators. Afr. Mat. 26, 717–739 (2015). https://doi.org/10.1007/s13370-014-0241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-014-0241-3

Keywords

Mathematics Subject Classification (2010)

Navigation