Skip to main content
Log in

Flexible Performance Design of Robust Control Using the Linear Matrix Technique for a Robotic Coax-Helicopter

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study introduces a parametric \({H_\infty }\) loop shaping control for a robotic coax-helicopter using linear matrix inequality and provides a flexibility design method of the performance index selection. Based on stabilizing solution of sufficient linear conditions, an alternative but simple set of solvability conditions is developed. The dynamic model of a robotic coax-helicopter was built before the design procedure of a new parametric \({H_\infty }\) loop shaping control was addressed. Therefore, the state and control matrices were computed using the small perturbation theory through the quasi-steady assumption. Performance of the resulting parametric \({H_\infty }\) controller was implemented to compare with previous works. The numerical simulations indicate effectiveness of the proposed method in step responses of the closed loop. This method reduces the complexity of appropriate selection of required performance and gives designer an additional degree of freedom to seek the appropriate close-loop performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taheri, A.H.; Korayem, M.H.; Taheri, M.: Robust controlled manipulation of nanoparticles using the AFM nanorobot probe. Arab. J. Sci. Eng. 40, 2685–2699 (2015)

    Article  Google Scholar 

  2. Hyde, R.A.; Glover, K.: The application of scheduled \({H_\infty }\) controllers to a VSTOL aircraft. IEEE Trans. Autom. Control 38(7), 1021–1039 (1993)

    Article  Google Scholar 

  3. Prempain, E.; Postlethwaite, I.: Static \({H_\infty }\) loop shaping control of a fly-by-wire helicopter. Automatica 41(9), 1517–1528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. La Civita, M.; Papaueorgiou, G.; Messner, W.C.; Kanade, T.: Design and flight testing of an \({H_\infty }\) controller for a robotic helicopter. J. Guid. Control Dyn. 29(2), 485–494 (2006)

    Article  Google Scholar 

  5. Iqbal, S.; Bhatti, A.I.: Load varying polytopic based robust controller design in LMI framework for a 2DOF stabilized platform. Arab. J. Sci. Eng. 36(2), 311–327 (2011)

    Article  Google Scholar 

  6. Patra, S.; Sen, S.; Ray, G.: Design of static \({H_\infty }\) loop shaping controller in four-block framework using LMI approach. Automatica 44(8), 2214–2220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guoxiang, G.; Jie, C.; Lee, E.B.: Parametric \({H_\infty }\) Loopshaping and Weighted Mixed Sensitivity Minimization. IEEE Trans. Autom. Control 44(4), 846–852 (1999)

  8. Patra, S.; Sen, S.; Ray, G.: A linear matrix inequality approach to parametric \({H_\infty }\) loop shaping control. J. Frankl. Inst. 348(8), 1832–1846 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Joseph, S.; Inderjit, C.: Performance and loads prediction for a high advance ratio coaxial rotor. In: 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics (2015)

  10. Chi, Z.; Todd, R.Q.; Hossein, S.; Chunhua, S.; Troy, G.: Aeromechanics of the coaxial compound helicopter. In: 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics (2015)

  11. Ferguson, K.; Thomson, D.: Flight dynamics investigation of compound helicopter configurations. J. Aircr. 52(1), 156–167 (2014)

  12. Syal, M.; Leishman, J.G.: Aerodynamic optimization study of a coaxial rotor in hovering flight. J. Am. Helicopter Soc. 57(4), 1–15 (2012)

    Article  Google Scholar 

  13. Yana, J.; Rand, O.: Performance analysis of a coaxail rotor systemin hover: three points of view. In: 28th International Congress of the Aeronautical Sciences (2012)

  14. Walsh, D.; Weiner, S.; Arifian, K.; Lawrence, T.; Wilson, M.; Millott, T.; Blackwell, R.: High airspeed testing of the Sikorsky X2 TechnologyTM demonstrator. In: the 67th Annual Forum of the American Helicopter Scociety International. Virginia Beach (2011)

  15. Kim, H.W.; Brown, R.E.: A rational approach to comparing the performance of coaxial and conventional rotors. J. Am. Helicopter Soc. 55(1), 12003 (2010)

    Article  Google Scholar 

  16. Lim, J.W.; McAlister, K.W.; Johnson, W.: Hover performance correlation for full-scale and model-scale coaxial rotors. J. Am. Helicopter Soc. 54(3), 32005 (2009)

    Article  Google Scholar 

  17. Leishman, J.G.; Ananthan, S.: An optimum coaxial rotor system for axial flight. J. Am. Helicopter Soc. 53(4), 366–381 (2008)

    Article  Google Scholar 

  18. Chen, M.; Ge, S.; Ren, B.: Robust attitude control of helicopters with actuator dynamics using neural networks. IET Control Theory Appl. 4(12), 2837 (2010)

  19. Coleman, C.P.; NASA: A Survey of Theoretical and Experimental Coaxial Rotor. Tech. Rep. 3675 (1997)

  20. Ramasamy, M.: Hover performance measurements toward understanding aerodynamic interference in coaxial, tandem, and tilt rotors. J. Am. Helicopter Soc. 60(3), 1–17 (2015)

    Article  MathSciNet  Google Scholar 

  21. Yeo, H.; Johnson, W.: Optimum design of a compound helicopter. J. Aircr. 46(4), 1210–1221 (2009)

    Article  Google Scholar 

  22. Ferguson, K.; Thomson, D.: Performance comparison between a conventional helicopter and compound helicopter configuration. Proc. Inst. Mech. Eng. Part G. J. Aerosp. Eng. 229(13), 2441–2456 (2015)

  23. Yuan, X.; Zhu, J.; Xiaming, Y.; Jihong, Z.: Comprehensive modeling and analysis of an unmanned coaxial helicopter. In: AIAA Guidance, Navigation, and Control Conference, January, pp. 1–16. American Institute of Aeronautics and Astronautics (2015)

  24. Schafroth, D.; Bouabdallah, S.; Bermes, C.; Siegwart, R.: From the test benches to the first prototype of the muFly micro helicopter. J. Intell. Robot. Syst. 54(1–3), 245–260 (2008)

    MATH  Google Scholar 

  25. Koehl, A.; Rafaralahy, H.; Boutayeb, M.; Martinez, B.: Aerodynamic modelling and experimental identification of a coaxial-rotor UAV. J. Intell. Robot. Syst. 68(1), 53–68 (2012)

    Article  MATH  Google Scholar 

  26. McFarlane, D.; Glover, K.: A loop-shaping design procedure using \({H_\infty }\) synthesis. IEEE Trans. Autom. Control 37(6), 759–769 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Walker, D.J.: Multivariable control of the longitudinal and lateral dynamics of a fly-by-wire helicopter. Control Eng. Pract. 11(7), 781–795 (2003)

    Article  Google Scholar 

  28. Prouty, R.W.; Curtiss, H.C.: Helicopter control systems: a history. J. Guid. Control Dyn. 26(1), 12–18 (2003)

    Article  Google Scholar 

  29. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 29(2), 315–378 (2012)

    Article  Google Scholar 

  30. Raymon, P.: Helicopter Performance, Stability and Control, reissue edn. Krieger Publishing Company, Boston (2002)

  31. Padfield, G.D.: Helicopter Flight Dynamics the Theory and Application of Flying Qualities and Simulation Modelling, 2nd edn. Blackwell, New York (2007)

    Book  Google Scholar 

  32. Scherer, C.; Gahinet, P.; Chilali, M.: Multiobjective output-feedback control via LMI optimization. IEEE Trans. Autom. Control 42(7), 896–911 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhiyan, D.; Shuan, L.; Yongming, Y.: Flexible performance design for the H loop-shaping control based on the linear matrix inequality approach: application to the coaxial rotor helicopter. Adv. Mech. Eng. 8(8), 1–9 (2016)

    Google Scholar 

  34. Iwasaki, T.; Skelton, R.: All controllers for the general \({H_\infty }\) control problem: LMI existence conditions and state space formulas. Automatica 30(8), 1307–1317 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schafroth, D.; Bermes, C.; Bouabdallah, S.; Siegwart, R.: Modeling, system identification and robust control of a coaxial micro helicopter. Control Eng. Pract. 18(7), 700–711 (2010)

    Article  MATH  Google Scholar 

  36. Peng, K.; Cai, G.; Chen, B.M.; Dong, M.; Lum, K.Y.; Lee, T.H.: Design and implementation of an autonomous flight control law for a UAV helicopter. Automatica 45(10), 2333–2338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gadewadikar, J.; Lewis, F.L.; Subbarao, K.; Peng, K.; Chen, B.M.: \({H_\infty }\) static output-feedback control for rotorcraft. J. Intell. Robot. Syst. 54(4), 629–646 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-ming Yao.

Additional information

National High Technology Research and Development Program 863 of China (No. 2013AA063903).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Zy., Liu, Sa., Liu, J. et al. Flexible Performance Design of Robust Control Using the Linear Matrix Technique for a Robotic Coax-Helicopter. Arab J Sci Eng 42, 1783–1793 (2017). https://doi.org/10.1007/s13369-016-2309-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2309-x

Keywords

Navigation