Skip to main content
Log in

Unsteady MHD Mixed Convective Flow of Chemically Reacting and Radiating Couple Stress Fluid in a Porous Medium Between Parallel Plates with Soret and Dufour Effects

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article attempts to analyze the chemical reaction, Soret and Dufour effects on an incompressible magnetohydrodynamic mixed convection flow of radiating couple stress fluid between parallel porous plates. It is assumed that the flow is generated due to periodic suction or injection at the plates, and the non-uniform temperature and concentration of the plates are assumed to be varying periodically with time. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformations; then, the resulting equations are solved numerically by the quasilinearization technique. The effects of various fluid and geometric parameters on non-dimensional velocity components, temperature distribution, concentration, skin friction, heat and mass transfer rates are discussed in detail through graphs and tables. It is observed that the temperature of the fluid is enhanced, whereas the concentration is decreased with the increasing of Soret and Dufour parameters. Also, it is noticed that the magnetic field and porous medium exhibit the similar effect on velocity components, temperature distribution, and concentration. It has been noticed that the present results have the better agreement with the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({k_2}\) :

Chemical reaction rate

\({C}\) :

Concentration

\({C_1}\) :

Concentration of the lower plate

\({C_2}\) :

Concentration of the upper plate

\({c_{{{\rm s}}}}\) :

Concentration susceptibility

\({\bar{J}}\) :

Current density

\({T^{\ast}}\) :

Dimensionless temperature, \({\frac{T-T_1 e^{i\omega t}}{\left( {T_2 -T_1 } \right)e^{i\omega t}}}\)

\({C^{\ast}}\) :

Dimensionless concentration, \({\frac{C-C_1 e^{i\omega t}}{\left( {C_2 -C_1 } \right)e^{i\omega t}}}\)

h :

Distance between parallel plates

Du:

Dufour number, \({\frac{D_1 k_{{\rm T}} \dot{n}_{{\rm A}} \rho c}{\upsilon^{2}V_2 c_{{s}} k}}\)

E :

Eckert number, \({\frac{\mu V_2 }{\rho hc(T_2 -T_1 )}}\)

\({\bar{E}}\) :

Electric field

p :

Fluid pressure

Ha:

Hartmann number, \({B_0 h\sqrt{\frac{\sigma }{\mu }}}\)

\({\bar{b}}\) :

Induced magnetic field

\({D^{-1}}\) :

Inverse Darcy parameter, \({\frac{h^{2}}{k_1 }}\)

\({B_0}\) :

Magnetic flux density

\({D_{1}}\) :

Mass diffusivity

\({\dot{n}_{{{A}}}}\) :

Mass transfer rate

\({k_{3}}\) :

Mean absorption coefficient

\({T_{{m}}}\) :

Mean temperature

Kr:

Non-dimensional chemical reaction parameter, \({\frac{k_2 h^{2}}{D_1 }}\)

\({k_1}\) :

Permeability parameter

Pr:

Prandtl number, \({\frac{\mu c}{k}}\)

Rd:

Radiation parameter, \({\frac{16 \sigma_1 T_1^3 }{3 k_3 k}}\)

D :

Rate of deformation tensor

Re:

Reynolds number, \({\frac{\rho V_2 h}{\mu }}\)

Sc:

Schmidt number, \({\frac{\upsilon}{D_1 }}\)

Sh:

Sherwood number, \({\frac{\dot{n}_{{{\rm A}}}}{h\upsilon(C_2 -C_1 )}}\)

Gm:

Solutal Grashof number, \({\frac{\rho g\beta_{{\rm C}} (C_2 -C_1 )h^{2}}{\mu V_2 }}\)

Sr:

Soret number, \({\frac{D_1 k_{{\rm T}} \upsilon V_2 }{cT_{{m}} \dot{n}_{{{\rm A}}}}}\)

c :

Specific heat at constant temperature

\({\sigma_1}\) :

Stefan–Boltzmann constant

\({V_1}\) :

Injection velocity at the lower plate

\({V_2}\) :

Suction velocity at the upper plate

a:

Suction–injection ratio (for mixed suction case), \({1-\frac{V_1 }{V_2 }}\)

\({a_{1}}\) :

Suction–injection ratio (for mixed injection case), \({\frac{V_2 }{V_1 }-1}\)

\({T}\) :

Temperature

\({T_1}\) :

Temperature of the lower plate

\({T_2}\) :

Temperature of the upper plate

k :

Thermal conductivity

\({k_{{T}}}\) :

Thermal–diffusion ratio

Gr:

Thermal Grashof number, \({\frac{\rho g\beta_{{T}} (T_2 -T_1 )h^{2}}{\mu V_2 }}\)

t :

Time

\({\bar{b}}\) :

Total magnetic field

\({\hat{i}, \hat{j}, \hat{k}}\) :

Unit vectors

\({\bar{Q}}\) :

Velocity vector

u :

Velocity component in X-direction

v :

Velocity component in Y-direction

\({\beta_{{T}}}\) :

Coefficient of thermal expansion

\({\beta_{{C}}}\) :

Coefficient of solutal expansion

\({\alpha}\) :

Couple stress parameter, \({\sqrt{\frac{\eta }{\mu h^{2}}}}\)

\({\lambda}\) :

Dimensionless y coordinate, \({\frac{y}{h}}\)

\({\zeta}\) :

Dimensionless axial variable, \({\left( {\frac{U_0 }{aV_2 }-\frac{x}{h}} \right)}\)

\({\sigma}\) :

Electric conductivity

\({\rho}\) :

Fluid density

\({\mu}\) :

Fluid viscosity

\({\mu^{\prime}}\) :

Magnetic permeability

\({\beta}\) :

Non-dimensional frequency parameter, \({\omega t}\)

\({\bar{\omega}}\) :

Rotation vector

References

  1. Stokes V.K.: Couple stresses in fluids. Phys. Fluids 9(9), 1709–1715 (1966)

    Article  Google Scholar 

  2. Stokes V.K.: Effects of couple stress in fluid on hydromagnetic channel flow. Phys. Fluids 11(5), 1131–1133 (1968)

    Article  Google Scholar 

  3. Srinivasacharya D.; Srinivasacharyulu N.; Odelu O.: Flow and heat transfer of couple stress fluid between two parallel porous plates. IAENG Int. J. Appl. Math. IJAM 41(2), 10 (2011)

    Google Scholar 

  4. Eckert E.R.G., Drake R.M.: Analysis of Heat and Mass Transfer. McGraw-Hill, New York (1972)

    MATH  Google Scholar 

  5. Srinivasacharya D., Kaladhar K.: Mixed convection flow of chemically reacting couple stress fluid in a vertical channel with Soret and Dufour effects. Int. J. Comput. Methods Eng. Sci. Mech. 15, 413–421 (2014)

    Article  MathSciNet  Google Scholar 

  6. Srinivasacharya D., Kaladhar K.: Soret and Dufour effects on free convection flow of a couple stress fluid in a vertical channel with chemical reaction. Chem. Ind. Chem. Eng. Q. 19((1)), 45–55 (2013)

    Article  Google Scholar 

  7. Odelu O., Naresh Kumar N.: Hall and ion slip effects on free convection heat and mass transfer of chemically reacting couple stress fluid in a porous expanding or contracting walls with Soret and Dufour effects. Front. Heat Mass Transf. 5, 22 (2014)

    Google Scholar 

  8. Srinivasacharya D., Shiferaw M.: Flow of micropolar fluid between parallel plates with Soret and Dufour effects. Arab. J. Sci. Eng. 39, 5085–5093 (2014)

    Article  MathSciNet  Google Scholar 

  9. Hayat T., Alsaedi A.: On thermal radiation and Joule heating effects in MHD flow of an Oldroyd-B fluid with thermophoresis. Arab. J. Sci. Eng. 36, 1113–1124 (2011)

    Article  Google Scholar 

  10. Mahmoud M.M.A., Megahed A.M.: Thermal radiation effect on mixed convection heat and mass transfer of a non-Newtonian fluid over a vertical surface embedded in a porous medium in the presence of thermal diffusion and diffusion-thermo effects. J. Appl. Mech. Tech. Phys. 54(1), 90–99 (2013)

    Article  MATH  Google Scholar 

  11. Rathish Kumar, B.V.; Krishna Murthy, S.V.S.S.N.V.G.: A finite element study of double diffusive mixed convection in a concentration stratified Darcian fluid saturated porous enclosure under injection/suction effect. J. Appl. Math. 2012, Article ID 594701 (2012)

  12. Olanrewaju P.O., Makinde O.D.: Effects of thermal diffusion and diffusion thermo on chemically reacting MHD boundary layer flow of heat and mass transfer past a moving vertical plate with suction/injection. Arab. J. Sci. Eng. 36, 1607–1619 (2011)

    Article  MATH  Google Scholar 

  13. Shateyi, S.; Motsa, S.S.; Sibanda, P.: The effects of thermal radiation, hall currents, Soret, and Dufour on MHD flow by mixed convection over a vertical surface in porous media. Math. Probl. Eng. 2010, Article ID 627475, 1–20 (2010)

  14. Seddeek M.A.: Thermal-diffusion and diffusion-thermo effects on mixed free-forced convective flow and mass transfer over an accelerating surface with a heat source in the presence of suction and blowing in the case of variable viscosity. Acta Mech. 172(1-2), 83–94 (2004)

    Article  MATH  Google Scholar 

  15. Srinivas S., Subramanyam Reddy A., Ramamohan T.R.: A study on thermal-diffusion and diffusion-thermo effects in a two-dimensional viscous flow between slowly expanding or contracting walls with weak permeability. Int. J. Heat Mass Transf. 55, 3008–3020 (2012)

    Article  Google Scholar 

  16. Hayat T., Mustafa M., Obaidat S.: Soret and Dufour effects on the stagnation-point flow of a micropolar fluid toward a stretching Sheet. J. Fluids Eng. 133, 021202-1–021202-9 (2011)

    Google Scholar 

  17. Vedavathi N., Ramakrishna K., Jayarami Reddy K.: Radiation and mass transfer effects on unsteady MHD convective flow past an infinite vertical plate with Dufour and Soret effects. Ain Shams Eng. J. 6, 363–371 (2015)

    Article  Google Scholar 

  18. Wu, Y.S.: Theoretical studies of non-Newtonian and Newtonian fluid flow through porous media, Ph. D thesis. University of California (1990)

  19. Subhas Abel M., Mahesha N., Malipatil Sharanagouda B.: Heat transfer due to MHD slip flow of a second-grade liquid over a stretching sheet through a porous medium with nonuniform heat source/sink. Chem. Eng. Commun. 198(2), 191–213 (2010)

    Article  Google Scholar 

  20. Mohyuddin M.R., Ashraf E.E.: Inverse solutions for a second-grade fluid for porous medium channel and Hall current effects. Proc. Indian Acad. Sci. (Math. Sci.) 114(1), 79–96 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pal D., Talukdar B.: Perturbation technique for unsteady MHD mixed convection periodic flow, heat and mass transfer in micropolar fluid with chemical reaction in the presence of thermal radiation. Cent. Eur. J. Phys. 10(5), 1150–1167 (2012)

    Google Scholar 

  22. Pal D., Talukdar B., Shivakumara I.S., Vajravelu K.: Effects of Hall current and chemical reaction on oscillatory mixed convection–radiation of a micropolar fluid in a rotating system. Chem. Eng. Commun. 199(8), 943–965 (2012)

    Article  Google Scholar 

  23. Pal D., Mondal H.: MHD non-Darcian mixed convection heat and mass transfer over a non-linear stretching sheet with Soret–Dufour effects and chemical reaction. Int. Commun. Heat Mass Transf. 38, 463–467 (2011)

    Article  Google Scholar 

  24. Hayat T., Nawaz M.: Soret and Dufour effects on the mixed convection flow of a second grade fluid subject to Hall and ion-slip currents. Int. J. Numer. Methods Fluids 67(9), 1073–1099 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sajid M., Pop I., Hayat T.: Fully developed mixed convection flow of a viscoelastic fluid between permeable parallel vertical plates. Comput. Math. Appl. 59, 493–498 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chamkha A.J., Mohamed R.A., Ahmed S.E.: Unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid with Joule heating, chemical reaction and radiation effects. Meccanica 46(2), 399–411 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bhatnagar R., Vayo H.W., Okunbor D.: Application of quasilinearization to viscoelastic flow through a porous annulus. Int. J. Non-Linear Mech. 29(1), 13–22 (1994)

    Article  MATH  Google Scholar 

  28. Huang C.L.: Application of quasilinearization technique to the vertical channel flow and heat convection. Int. J. Non-Linear Mech. 13(2), 55–60 (1978)

    Article  MATH  Google Scholar 

  29. Hymavathi T., Shanker B.: A quasilinearization approach to heat transfer in MHD visco-elastic fluid flow. Appl. Math. Comput. 215(6), 2045–2054 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Terrill R.M., Shrestha G.M.: Laminar flow through a channel with uniformly porous walls of different permeability. Appl. Sci. Res. 15, 440–468 (1965)

    Article  MATH  Google Scholar 

  31. Sutton G.W., Sherman A.: Engineering Magneto Hydrodynamics. McGrawhill, New York (1965)

    Google Scholar 

  32. Bellman R.E., Kalaba R.E.: Quasilinearization and Boundary-Value Problems. Elsevier publishing Co. Inc., New York (1965)

    MATH  Google Scholar 

  33. Stokes V.K.: Theories of Fluids with Microstructure—An Introduction. Springer, Berlin (1984)

    Book  Google Scholar 

  34. Cebeci T, Bradshaw P.: Physical and Computational Aspects of Convective Heat Transfer. Springer, New York (1984)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odelu Ojjela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojjela, O., Naresh Kumar, N. Unsteady MHD Mixed Convective Flow of Chemically Reacting and Radiating Couple Stress Fluid in a Porous Medium Between Parallel Plates with Soret and Dufour Effects. Arab J Sci Eng 41, 1941–1953 (2016). https://doi.org/10.1007/s13369-016-2045-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2045-2

Keywords

Navigation