Skip to main content
Log in

Enzymatic Synthesis of Mono- and Diglyceride Using Lipase From Candida rugosa Immobilized Onto Cellulose Acetate-Coated Fe2O3 Nanoparticles

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A lipase from Candida rugosa was covalently immobilized on the cellulose acetate (CA)-coated Fe2O3 nanoparticles for the biocatalysis applications. The characterization of the Fe2O3-CA particles before and after immobilization of lipase was studied. The biocatalyst was assayed for the glycerolysis of olive oil in solvent system. The effect of reaction time, temperature, molar ratio of glycerol to oil and amount of lipase on the glycerolysis reaction was investigated. Results showed that the high yield of monoglycerides (49.7 wt%) and diglycerides (17.4 wt%) was achieved at 40 °C temperature and 0.02 g of lipase with relatively low glycerol to oil molar ratio (2:1) within 4 h of reaction time. Kinetics of immobilized lipase followed Lineweaver–Burk model with lower K m and V max values when compared to the free lipase. The immobilized lipase showed higher activity, thermal stability and reusability compared to the free lipase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghamgui H., Miled N., Rebai A., Chaabouni M.K., Gargouri Y.: Production of monoolein by immobilized Staphylococcus simulans lipase in a solvent-free system: optimization by response surface methodology. Enzyme Microb. Technol. 39, 717–723 (2006)

    Article  Google Scholar 

  2. Singh A.K., Mukhopadhyay M.: Overview of fungal lipase: a review. Appl. Biochem. Biotechnol. 166, 486–520 (2012)

    Article  Google Scholar 

  3. Singh A.K., Mukhopadhyay M.: Response surface methodology for optimizing the glycerolysis reaction of olive oil by Candida rugosa lipase. Chem. Ind. Chem. Eng. Q. 20(1), 127–134 (2014)

    Article  Google Scholar 

  4. Kaewthong W., Sirisansaneeyakul S., Prasertsan P., H-Kittikun A.: Continuous production of monoacylglycerols by glycerolysis of palm olein by immobilized lipase. Process Biochem. 40, 1525–1530 (2005)

    Article  Google Scholar 

  5. Dalla-Vecchia R., Sebrao D., Nascimento M.G., Soldi V.: Carboxymethyl cellulose and poly (vinyl alcohol) used as a film support for lipases immobilization. Process Biochem. 40, 2677–2682 (2005)

    Article  Google Scholar 

  6. Singh A.K., Mukhopadhyay M.: Olive oil glycerolysis with the immobilized lipase Candida antarctica in a solvent free system. Grasas Aceites 63, 202–208 (2012)

    Article  Google Scholar 

  7. Singh A.K., Mukhopadhyay M.: Immobilization of Candida antarctica lipase onto cellulose acetate-coated Fe2O3 nanoparticles for olive oil glycerolysis. Korean J. Chem. Eng. 31, 1225–1232 (2014)

    Article  Google Scholar 

  8. Kim M.H., An S., Won K., Kim H.J., Lee S.H.: Entrapment of enzymes into cellulose–biopolymer composite hydrogel beads using biocompatible ionic liquid. J. Mol. Catal. B Enzym. 75, 68–72 (2012)

    Article  Google Scholar 

  9. Singh A.K., Mukhopadhyay M.: Optimization of lipase-catalyzed glycerolysis for mono and diglyceride production using response surface methodology. Arab. J. Sci. Eng. 39, 2463–2474 (2014)

    Article  Google Scholar 

  10. Chen Y.Z., Ching C.B., Xu R.: Lipase immobilization on modified zirconia nanoparticles: Studies on the effects of modifiers. Process Biochem. 44, 1245–1251 (2009)

    Article  Google Scholar 

  11. Lee D.G., Ponvel K.M., Kim M., Hwang S., Ahn I.S., Lee C.H.: Immobilization of lipase on hydrophobic nano-sized magnetite particles. J. Mol. Catal. B Enzym. 57, 62–66 (2009)

    Article  Google Scholar 

  12. Ranjbakhsh E., Bordbar A.K., Abbasi M., Khosropour A.R., Shams E.: Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles. Chem. Eng. J. 179, 272–276 (2012)

    Article  Google Scholar 

  13. Namdeo M., Bajpai S.K.: Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J. Mol. Catal. B Enzym. 59, 134–139 (2009)

    Article  Google Scholar 

  14. Wu Y., Wang Y.J., Luo G.S., Dai Y.Y.: In situ preparation of magnetic Fe3O4- chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresour. Technol. 100, 3459–3464 (2008)

    Article  Google Scholar 

  15. Stellmach B.: Bestimmungs Methoden Enzyme, pp. 229. Chinese Light Industry Press, Beijing (1992)

    Google Scholar 

  16. Li Y., Gao F., Wei W., Qu J.B., Ma G.H., Zhou W.Q.: Pore size of macroporous polystyrene microspheres affects lipase immobilization. J. Mol. Catal. B Enzym. 66, 182–189 (2010)

    Article  Google Scholar 

  17. Bragger J.M., Dunn R.V., Daniel R.M.: Enzyme activity down to −100 °C. Biochim. Biophys. Acta 1480, 278–282 (2000)

    Article  Google Scholar 

  18. Changa M.Y., Juangb R.S.: Activities, stabilities, and reaction kinetics of three free and chitosan–clay composite immobilized enzymes. Enzyme Microb. Technol. 36, 75–78 (2005)

    Article  Google Scholar 

  19. Borgo C.A., Lazarin A.M., Kholin Y.V., Landers R., Gushikem Y.: The ion exchange properties and equilibrium constants of Li+, Na+ and K+ on zirconium phosphate highly dispersed on a cellulose acetate fibers surface. J. Braz. Chem. Soc. 15, 50–57 (2004)

    Article  Google Scholar 

  20. Tsioptsias C., Sakellariou K.G., Tsivintzelis I., Papadopoulou L., Panayiotou C.: Preparation and characterization of cellulose acetate–Fe2O3 composite nanofibrous materials. Carbohydr. Polym. 81, 925–930 (2010)

    Article  Google Scholar 

  21. Damstrup M.L., Jensen T., Sparsø F.V., Kiil S.Z., Jensen A.D., Xu X.: Solvent optimization for efficient enzymatic monoacylglycerol production based on a glycerolysis reaction. J. Am. Oil Chem. Soc. 8, 559–564 (2000)

    Google Scholar 

  22. Zhong N., Li L., Xu X., Cheong L., Li B., Hu S., Zhao X.: An efficient binary solvent mixture for monoacylglycerol synthesis by enzymatic glycerolysis. J. Am. Oil Chem. Soc. 86, 783–789 (2009)

    Article  Google Scholar 

  23. McNeill G.P., Yamane T.: Further improvements in the yield of monoglycerides during enzymatic glycerolysis of fats and oils. J. Am. Oil Chem. Soc. 68, 6–10 (1991)

    Article  Google Scholar 

  24. Tüter M., Aksoy H.A.: Solvent-free glycerolysis of palm and palm kernel oils catalyzed by commercial1, 3-specific lipase from Humicola lanuginosa and composition of glycerolysis products. Biotechnol. Lett. 22, 31–34 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mausumi Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Mukhopadhyay, M. Enzymatic Synthesis of Mono- and Diglyceride Using Lipase From Candida rugosa Immobilized Onto Cellulose Acetate-Coated Fe2O3 Nanoparticles. Arab J Sci Eng 41, 2553–2561 (2016). https://doi.org/10.1007/s13369-016-2036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2036-3

Keywords

Navigation