Skip to main content
Log in

Experimental and Numerical Study of Axial Turbulent Fluid Flow and Heat Transfer in a Rotating Annulus

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present work is an experimental and a numerical investigation of the turbulent fluid flow and heat transfer in an annular channel between two concentric cylinders with heated stationary outer cylinder (constant heat flux) and adiabatic rotating inner cylinder. Numerically, the governing equations are discretized in a finite volume fashion using a non-staggered (collocated) arrangement of the variables. The solutions were obtained using the SIMPLE algorithm with upwind scheme. A computer program in FORTRAN 90 was build to solve a set of partial differential equations that govern the fluid flow and heat transfer in annular channels. The experimental results are obtained for an inlet air velocity range of 2–6 m/s, for a wall heat flux range of 600–1200 W/m2 and a rotational speed range of inner cylinder of 0–1500 rpm with a gap width of 1.5 cm. Finally, the relationships between the average Nusselt number and the effective Reynolds number for experimental and numerical results were proposed and compared with those in the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d :

Air gap thickness or gap width (m): \({{d} = {r}_{{\rm o}}- {r}_{{\rm i}}}\)

\({{D}_{{\rm h}}}\) :

Hydraulic diameter (m): \({{D}_{{\rm h}} = 2({r}_{{\rm o}}- {r}_{{\rm i}})}\)

\({{r}_{{\rm o}}}\) :

Radius of outer cylinder (m)

\({{r}_{{\rm i}}}\) :

Radius of inner cylinder (m)

\({{u}_{{\rm in}}}\) :

Inlet air velocity (m/s)

N :

Rotation speed of inner cylinder (rpm)

L :

Length (m)

\({{k}_{{\rm a}}}\) :

Air thermal conductivity \({({\rm W/m}^{2} \,^{\circ} {C})}\)

\({{q}_{{\rm w}}}\) :

Wall heat flux (W/m2)

\({\overline {{T}_{\rm s}}}\) :

Average surface temperature of outer cylinder \({(^{\circ} {\rm C})}\)

\({\overline{{T}_{\rm a}}}\) :

Average air temperature \({(^{\circ} {\rm C})}\)

P :

Pressure (N/m2)

k :

Turbulent kinetic energy (m2/s2)

\({\overline{{Nu}}}\) :

Average Nusselt number: \({\overline{{Nu}} = {q}_{{\rm w}}{D}_{{\rm h}} /(\overline {{T}_{{\rm w}} }-\overline{{T}_{{\rm a}} } ) {k}_{{\rm a}}}\)

Pr :

Prandtl number: \({\Pr = \mu{C}_{{\rm p}} / {k}_{{\rm a}}}\)

\({{Re}_{{\rm a}}}\) :

Axial Reynolds number: \({{Re}_{{\rm a}}=\rho \,\,{u}_{{\rm in}}{D}_{{\rm h}}/ \mu}\)

\({{Re}_{{\rm r}}}\) :

Rotational Reynolds number: \({{Re}_{{\rm r}}=\rho\,\, {r}_{{\rm i}} \varOmega {D}_{{\rm h} }/ \mu}\)

\({{u}_{{\rm eff }}}\) :

Effective velocity (m/s): \({{u}_{{\rm eff}} = [ {u}_{{\rm in}}^{2 }+ ({r}_{{\rm i}} \varOmega / 2)^{2 }]^{0.5}}\)

\({{Re}_{{\rm eff}}}\) :

Effective Reynolds number: \({{Re}_{{\rm eff}}=\rho\,\,{u}_{{\rm eff}} {D}_{{\rm h}}/ \mu}\)

μ :

Dynamic viscosity (N s/m2)

\({\mu_{{\rm t}}}\) :

Turbulent viscosity (N s/m2)

\({\varOmega}\) :

Angular velocity of inner cylinder (rad/s): \({\varOmega {=} 2 \pi {\rm N} / 60}\)

\({\rho}\) :

Density (kg/m3)

\({\varepsilon}\) :

Turbulent energy dissipation rate (m2/ s2)

\({\varGamma}\) :

General exchange coefficient

a:

Axial

r:

Rotational

eff:

Effective

w:

Wall

in:

Inlet

t:

Turbulent

o:

Outer

i:

Inner

References

  1. Gazley C.: Heat transfer characteristics of the rotation and axial flow between concentric cylinders. J. Heat Transf. 80, 79–90 (1985)

    Google Scholar 

  2. Kuzay, T.M.: Turbulent heat and momentum transfer studies, Ph.D. Thesis, University of Minnesota, (1973)

  3. Pfitzer H., Beer H.: Heat Transfer in an annulus between independently rotating tubes with turbulent axial flow. Int. J. Heat Mass Transf. 35, 623–633 (1992)

    Article  Google Scholar 

  4. Smyth, R.; Zurita, P.: Heat transfer at the outer surface of a rotating cylinder in the presence of axial flow, Trans. Eng. Sci. 5 (1994)

  5. Escudier M.P., Gouldson I.W.: Concentric annular flow with center body rotation of a Newtonian and a shear- thinning liquid. Int. J. Heat Fluid Flow 16, 156–162 (1995)

    Article  Google Scholar 

  6. Char M.I., Hsu Y.H.: Numerical prediction of turbulent mixed convection in a concentric horizontal rotating annulus with low-re two-equation models. Int. J. of Heat and Mass Transfer 41, 1633–1643 (1998)

    Article  MATH  Google Scholar 

  7. Tzeng S.C.: Heat transfer in a Small Gap between Co-Axial Rotating Cylinders. Int. Commun. Heat Mass Transf. 33, 737–743 (2006)

    Article  Google Scholar 

  8. Ouali S.S., Saury D., Harmand S., Laloy O.: Convective heat transfer inside a rotating cylinder with an axial air flow. Int. J. Therm. Sci. 45, 1166–1178 (2006)

    Article  Google Scholar 

  9. Sukumaran, A.K.; Santhosh, K.S.: Numerical simulation of heat transfer and fluid flow in rotating annulus, In: National Conference on Technological Trends, (2009)

  10. Nili-Ahmadabadi M., Karrabi H.: Heat transfer and flow region characteristics study in a non-annular channel between rotor and stator. Therm. Sci. 16, 593–603 (2012)

    Article  Google Scholar 

  11. Hadziabdic M., Hanjalic K., Mullyadzhanov R.: LES of turbulent flow in a concentric annulus with rotating outer wall. Int. J.Heat Fluid Flow 43, 74–84 (2013)

    Article  Google Scholar 

  12. Fénot M., Bertin Y., Dorignac E., Lalizel G.: A review of heat transfers between concentric rotating cylinders with or without axial flow. Int. J. Therm. Sci. 50, 1138–1155 (2011)

    Article  Google Scholar 

  13. Launder B.E., Spalding D.B.: The numerical computation of turbulent flow. Comp. Methods Appl. Mech. Eng. 3, 269 (1974)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal M. Jalil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalil, J.M., Hanfash, AJ.O. & Abdul-Mutaleb, M.R. Experimental and Numerical Study of Axial Turbulent Fluid Flow and Heat Transfer in a Rotating Annulus. Arab J Sci Eng 41, 1857–1865 (2016). https://doi.org/10.1007/s13369-015-1909-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1909-1

Keywords

Navigation