Skip to main content
Log in

Batch Adsorption Studies on the Removal of Acid Blue 25 from Aqueous Solution Using Azolla pinnata and Soya Bean Waste

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Azolla pinnata (AP) and soya bean waste (SBW) were studied for their potentials to remove hazardous dye, acid blue 25 (AB25), from aqueous solution in a batch adsorption process. Various parameters such as pH, contact time, concentration and temperature were studied. The optimum pH was found to be at pH 2.0, and short duration of contact time at 180 min was sufficient to attain equilibrium. The experimental data were fitted to three different isotherm models, and the adsorption was best described by the Langmuir isotherm model. The maximum monolayer capacities were estimated to be 38.3 and \({50.5\,{\rm mg}\,{\rm g}^{-1}}\) for SBW and AP, respectively. Kinetics studies showed that the adsorption system for both adsorbents follow pseudo-second-order model. Weber–Morris model showed that intraparticle diffusion is not the rate-limiting step, while Boyd model suggested that film diffusion may be the controlling mechanism for both adsorbent. The adsorption processes were found to be thermodynamically feasible. AP-AB25 system is endothermic in nature, while SBW-AB25 is exothermic. Regeneration experiment showed that NaOH is effective at regenerating the spent adsorbent, where at fifth cycle, the adsorption capacities of AP and SBW were comparable to the unspent adsorbents. All of these discoveries highlighted the potential of both AP and SBW as effective adsorbents for removal of AB25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bajc Z., Jenčič V., Šinigoj Gačnik K.: Elimination of malachite green residues from meat of rainbow trout and carp after water-born exposure. Aquaculture 321, 13–16 (2011)

    Article  Google Scholar 

  2. Liu R., Hei W., He P., Li Z.: Simultaneous determination of fifteen illegal dyes in animal feeds and poultry products by ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B 879, 2416–2422 (2011)

    Article  Google Scholar 

  3. Sultana Z., Ali M.E., Uddin M.S., Haque M.M.: Implementation of effluent treatment plants for waste water treatment. J. Environ. Prot. 4, 301 (2013)

    Article  Google Scholar 

  4. Wesenberg D., Kyriakides I., Agathos S.N.: White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22, 161–187 (2003)

    Article  Google Scholar 

  5. Crini G.: Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97, 1061–1085 (2006)

    Article  Google Scholar 

  6. Dahri, M.K.; Kooh, M.R.R.; Lim, L.B.L.: Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution. Alexandria Eng. J. doi:10.1016/j.aej.2015.07.005 (2015)

  7. Kooh M.R.R., Lim L.B.L., Dahri M.K., Lim L.H., Sarath Bandara J.M.R.: Azolla pinnata: an efficient low cost material for removal of methyl violet 2B by using adsorption method. Waste Biomass Valoriz. 6, 547–559 (2015)

    Article  Google Scholar 

  8. Kooh, M.R.R.; Lim, L.B.L.; Lim, L.H.; Bandara, J.M.R.S.: Batch adsorption studies on the removal of malachite green from water by chemically modified Azolla pinnata. Desalin Water Treat. doi:10.1080/19443994.2015.1065450 (2015)

  9. Chieng, H.I.; Lim, L.B.L.; Priyantha, N.: Sorption characteristics of peat from Brunei Darussalam for the removal of rhodamine B dye from aqueous solution: adsorption isotherms, thermodynamics, kinetics and regeneration studies. Desalin. Water Treat. doi:10.1080/19443994.2014.919609 (2014)

  10. Badii K., Ardejani F.D., Saberi M.A., Limaee N.Y., Shafaei S.: Adsorption of Acid Blue 25 dye on diatomite in aqueous solutions. Indian J. Chem. Technol. 17, 7–16 (2010)

    Google Scholar 

  11. Auta M., Hameed B.H.: Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of Acid Blue 25 dye. Chem. Eng. J. 171, 502–509 (2011)

    Article  Google Scholar 

  12. Dahri M.K., Kooh M.R.R., Lim L.B.L.: Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies. J. Environ. Chem. Eng. 2, 1434–1444 (2014)

    Article  Google Scholar 

  13. Daneshvar E., Sohrabi M.S., Kousha M., Bhatnagar A., Aliakbarian B., Converti A., Norrström A.-C.: Shrimp shell as an efficient bioadsorbent for Acid Blue 25 dye removal from aqueous solution. J. Taiwan Inst. Chem. Eng. 45, 2926–2934 (2014)

    Article  Google Scholar 

  14. Lim L.B.L., Priyantha N., Hei Ing C., Khairud Dahri M., Tennakoon D.T.B., Zehra T., Suklueng M.: Artocarpus odoratissimus skin as a potential low-cost biosorbent for the removal of methylene blue and methyl violet 2B. Desalin. Water Treat. 53, 964–975 (2015)

    Google Scholar 

  15. Priyantha N., Lim L.B.L., Dahri M.K.: Dragon fruit skin as a potential low-cost biosorbent for the removal of manganese(II) ions. J. Appl. Sci. Environ. Sanit. 8, 179–188 (2013)

    Google Scholar 

  16. Lim, L.B.L.; Priyantha, N.; Tennakoon, D.T.B.; Chieng, H.I.; Dahri, M.K.; Suklueng, M.: Breadnut peel as a highly effective low-cost biosorbent for methylene blue: Equilibrium, thermodynamic and kinetic studies. Arabian J. Chem. (2013). doi:10.1016/j.arabjc.2013.12.018

  17. Chieng H.I., Priyantha N., Lim L.B.L.: Effective adsorption of toxic brilliant green from aqueous solution using peat of Brunei Darussalam: isotherms, thermodynamics, kinetics and regeneration studies. RSC Adv. 5, 34603–34615 (2015)

    Article  Google Scholar 

  18. Huang F., Guo C.-L., Lu G.-N., Yi X.-Y., Zhu L.-D., Dang Z.: Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere 109, 134–142 (2014)

    Article  Google Scholar 

  19. Gaur J.P., Noraho N.: Adsorption and uptake of cadmium by Azolla pinnata: kinetics of inhibition by cations. Biomed. Environ. Sci. 8, 149–157 (1995)

    Google Scholar 

  20. Rai P.K.: Technical note: phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int. J. Phytoremediat. 10, 430–439 (2008)

    Article  Google Scholar 

  21. Jain S., Vasudevan P., Jha N.: Azolla pinnata R. Br. and Lemna minor L. for removal of lead and zinc from polluted water. Water Res. 24, 177–183 (1990)

    Article  Google Scholar 

  22. Rahman M.A., Hasegawa H.: Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83, 633–646 (2011)

    Article  Google Scholar 

  23. Ghodbane H., Hamdaoui O.: Decolorization of antraquinonic dye, C.I. Acid Blue 25, in aqueous solution by direct UV irradiation, UV/H2O2 and UV/Fe(II) processes. Chem. Eng. J. 160, 226–231 (2010)

    Article  Google Scholar 

  24. Feng Y., Dionysiou D.D., Wu Y., Zhou H., Xue L., He S., Yang L.: Adsorption of dyestuff from aqueous solutions through oxalic acid-modified swede rape straw: adsorption process and disposal methodology of depleted bioadsorbents. Bioresour. Technol. 138, 191–197 (2013)

    Article  Google Scholar 

  25. Zehra, T.; Priyantha, N.; Lim, L.B.L.; Iqbal, E.: Sorption characteristics of peat of Brunei Darussalam V: removal of Congo red dye from aqueous solution by peat. Desalin. Water. Treat. doi:10.1080/19443994.2014.899929 (2014)

  26. Lagergren S.: Zur Theorie der Sogenannten Adsorption gel Ster Stoffe. K. Sven. Vetenskapsakad. Handl. 24, 1–39 (1898)

    Google Scholar 

  27. Ho Y.S., McKay G.: Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)

    Article  Google Scholar 

  28. Weber W., Morris J.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89, 31–60 (1963)

    Google Scholar 

  29. Boyd G.E., Adamson A.W., M. L.S. Jr.: The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J. Am. Chem. Soc. 69, 2836–2848 (1947)

    Article  Google Scholar 

  30. Langmuir I.: The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38, 2221–2295 (1916)

    Article  Google Scholar 

  31. Freundlich H.M.F.: Over the adsorption in solution. J. Phys. Chem. 57, 385–471 (1906)

    Google Scholar 

  32. Dubinin M.M., Radushkevich L.V.: Equation of the characteristic curve of activated charcoal. Proc. Acad. Sci. 55, 327 (1947)

    Google Scholar 

  33. Hanafiah M.A.K.M., Ngah W.S.W., Zolkafly S.H., Teong L.C., Majid Z.A.A.: Acid Blue 25 adsorption on base treated Shorea dasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis. J. Environ. Sci. 24, P261–268 (2012)

    Article  Google Scholar 

  34. Mane V.S., Babu P.: Studies on the adsorption of Brilliant Green dye from aqueous solution onto low-cost NaOH treated saw dust. Desalination 273, 321–329 (2011)

    Article  Google Scholar 

  35. Chen H., Zhao J., Dai G.: Silkworm exuviae—a new non-conventional and low-cost adsorbent for removal of methylene blue from aqueous solutions. J. Hazard. Mater. 186, 1320–1327 (2011)

    Article  Google Scholar 

  36. Özacar M., Şengil  I.A.: Application of kinetic models to the sorption of disperse dyes onto alunite. Colloids Surf. A 242, 105–113 (2004)

    Article  Google Scholar 

  37. Zhao Y., Yue Q., Li Q., Xu X., Yang Z., Wang X., Gao B., Yu H.: Characterization of red mud granular adsorbent (RMGA) and its performance on phosphate removal from aqueous solution. Chem. Eng. J. 193, 161–168 (2012)

    Article  Google Scholar 

  38. Maiyalagan T., Karthikeyan S.: Film-pore diffusion modeling for sorption of azo dye on to exfoliated graphitic nanoplatelets. Indian J. Chem. Technol. 20, 7–14 (2013)

    Google Scholar 

  39. Rehman M.S.U., Munir M., Ashfaq M., Rashid N., Nazar M.F., Danish M., Han J.-I.: Adsorption of Brilliant Green dye from aqueous solution onto red clay. Chem. Eng. J. 228, 54–62 (2013)

    Article  Google Scholar 

  40. Yang Y., Jin D., Wang G., Liu D., Jia X., Zhao Y.: Biosorption of Acid Blue 25 by unmodified and CPC-modified biomass of Penicillium YW01: kinetic study, equilibrium isotherm and FTIR analysis. Colloids Surf. B Biointerfaces 88, 521–526 (2011)

    Article  Google Scholar 

  41. Ruixia W., Jinlong C., Lianlong C., Zheng-hao F., Ai-min L., Quanxing Z.: Study of adsorption of lipoic acid on three types of resin. React. Funct. Polym. 59, 243–252 (2004)

    Article  Google Scholar 

  42. Keeler J., Wothers P.: Why Chemical Reactions Happen. Oxford University Press, Oxford (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Raziq Rahimi Kooh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kooh, M.R.R., Dahri, M.K., Lim, L.B.L. et al. Batch Adsorption Studies on the Removal of Acid Blue 25 from Aqueous Solution Using Azolla pinnata and Soya Bean Waste. Arab J Sci Eng 41, 2453–2464 (2016). https://doi.org/10.1007/s13369-015-1877-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1877-5

Keywords

Navigation