Skip to main content
Log in

Electrochemical Behavior of the Passive Films Formed on Alloy 22 (UNS N06022) in Acidic Solutions

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Passive behavior and semiconducting properties of alloy 22 in sulfuric and nitric acidic solutions were studied. Corrosion current density was measured from potentiodynamic polarization plots, defect density was drawn from Mott–Schottky analysis, and finally polarization resistance and passive film thickness were estimated by electrochemical impedance spectroscopy. Potentiodynamic polarization curves suggested that alloy 22 showed excellent passive behavior in both nitric and sulfuric solutions. Mott–Schottky analysis revealed that the passive films formed on alloy 22 in both acidic solutions behave as n-type and p-type semiconductors. Also, this analysis indicated that the donor and acceptor densities are in the range 1021 cm−3 and increased with solution concentration. In conclusion, electrochemical impedance spectroscopy and Mott–Schottky analysis revealed that dilute nitric and sulfuric acidic solutions offer better conditions of the passive film formation on alloy 22 with higher protection behavior than concentrated nitric and sulfuric solutions, due to the growth of a much thicker and less defective films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gray J.J., Orme C.A.: Electrochemical impedance spectroscopy study of the passive films of alloy 22 in low pH nitrate and chloride environments. Electrochim. Acta 52, 2370–2375 (2007)

    Article  Google Scholar 

  2. Raja K.S., Namjoshi S.A., Misra M.: Improved corrosion resistance of Ni–22Cr–13Mo–4W Alloy by surface Nanocrystallization. Mater. Lett. 59, 570–574 (2005)

    Article  Google Scholar 

  3. Gray J.J., El Dasher B.S., Orme C.A.: Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study of the corrosion of alloy 22. Sur. Sci. 600, 2488–2494 (2006)

    Article  Google Scholar 

  4. Macdonald D.D.: Theoretical investigation of the evolution of the passive state on Alloy 22 in acidified, saturated brine under open circuit conditions. Electrochim. Acta 56, 7411–7420 (2011)

    Article  Google Scholar 

  5. Rodríguez M.A., Carranza R.M., Rebak R.B.: Influence of halide ions and alloy microstructure on the passive and localized corrosion behavior of alloy 22. Metall. Mater. Trans. A 36A(5), 1179–1185 (2005)

    Article  Google Scholar 

  6. Lloyd A.C., Shoesmith D.W., McIntyre N.S., Noel J.J.: Effects of temperature and potential on the passive corrosion properties of Alloys C22 and C276. J. Electrochem. Soc. 150, B120–B130 (2003)

    Article  Google Scholar 

  7. Rybalka K.V., Beketaeva L.A., Davydov A.D.: Effect of self-passivation on the electrochemical and corrosion behaviour of alloy C-22 in NaCl solutions. Corros. Sci. 54, 161–166 (2012)

    Article  Google Scholar 

  8. Gray J.J., Hayes J.R., Gdowski G.E., Viani B.E., Orme C.A.: Influence of solution pH, anion concentration, and temperature on the corrosion properties of alloy 22. J. Electrochem. Soc. 153(3), B61–B67 (2006)

    Article  Google Scholar 

  9. Gray J.J., Hayes J.R., Gdowski G.E., Orme C.A.: Inhibiting effects of nitrates on the passive film breakdown of alloy 22 in chloride environments. J. Electrochem. Soc. 153(5), B156–B161 (2006)

    Article  Google Scholar 

  10. Rodríguez M.A., Carranza R.M., Rebak R.B.: Passivation and depassivation of alloy 22 in acidic chloride solutions corrosion. J. Electrochem. Soc. 157(1), C1–C8 (2010)

    Article  Google Scholar 

  11. Zhang X., Shoesmith D.W.: Influence of temperature on passive film properties on Ni–Cr–Mo Alloy C-2000. Corros. Sci. 76, 424–431 (2013)

    Article  Google Scholar 

  12. Zhang X., Zagidulin D., Shoesmith D.W.: Characterization of film properties on the Ni–Cr–Mo alloy C-2000. Electrochim. Acta 89, 814–822 (2013)

    Article  Google Scholar 

  13. Zagidulin D., Zhang X., Zhou J., Noël J.J., Shoesmith D.W.: Characterization of surface composition on alloy-22 in neutral chloride solutions. Surf. Interf. Anal. 45, 1014–1019 (2013)

    Article  Google Scholar 

  14. Macdonald, D.D.; McMillion, L.G.; Namjoshi, S.A.; Sun, A.: Deterministic modeling of alloy 22 uniform corrosion: model parameter derivation from electrochemical impedance spectroscopy data. In: TMS MS&T 2004 Symposium on Materials Damage Prognosis, New Orleans, LA (2004)

  15. Davydov A., Engelhardt G.R., Jayaweera P., Macdonald D.D., Priyantha N.: The localized corrosion of Alloy 22 in sodium chloride solutions at elevated temperature. Corrosion 61, 857–871 (2005)

    Article  Google Scholar 

  16. Jones D.A., Macdonald D.D., McMillion L.G., Sun A.: General corrosion of alloy 22: experimental determination of model parameters from electrochemical impedance spectroscopy data. Met. Trans. A 36A, 1129 (2005)

    Google Scholar 

  17. Burstein G.T.: A hundred years of Tafel’s Equation: 1905–2005. Corros. Sci. 47, 2858–2870 (2005)

    Article  Google Scholar 

  18. Bellanger G., Rameau J.J.: Behaviour of Hastelloy C22 steel in sulphate solutions at pH 3 and low temperatures. J. Mater. Sci. 31, 2097–2108 (1996)

    Article  Google Scholar 

  19. Macdonald D.D.: On the existence of our metals-based civilization I. Phase-space analysis. J. Electrochem. Soc. 153, B213–B224 (2006)

    Article  Google Scholar 

  20. Macdonald D.D.: On the tenuous nature of passivity and its role in the isolation of HLNW. J. Nucl. Mater. 379, 24–32 (2008)

    Article  Google Scholar 

  21. Priyantha N., Jayaweera P., Macdonald D.D., Sun A.: An electrochemical impedance study of Alloy 22 in NaCl brine at elevated temperature. I. Corrosion behavior. J. Electroanal. Chem. 572, 409–419 (2004)

    Article  Google Scholar 

  22. Zhang L., Macdonald D.D.: Segregation of alloying elements in passive systems—I. XPS studies on the Ni–W system. Electrochim. Acta 43, 2661–2671 (1998)

    Article  Google Scholar 

  23. Zhang L., Macdonald D.D.: Segregation of alloying elements in passive systems—II. Numerical simulation. Electrochim. Acta 43, 2673–2685 (1998)

    Article  Google Scholar 

  24. Nishimura R.: Pitting corrosion of nickel in borate and phosphate solutions. Corrosion 43, 486–492 (1987)

    Article  Google Scholar 

  25. Jakupi P., Zagidulin D., Noël J.J., Shoesmith D.W.: The impedance properties of the oxide film on the Ni–Cr–Mo Alloy-22 in neutral concentrated sodium chloride solution. Electrochim. Acta 56, 6251–6259 (2011)

    Article  Google Scholar 

  26. Hirschorna B., Orazema M.E., Tribollet B., Vivierb V., Frateurc I., Musianid M.: Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 55, 6218–6227 (2010)

    Article  Google Scholar 

  27. Jinlong L., Hongyun L.: Effect of surface burnishing on texture and corrosion behavior of 2024 aluminum alloy. Surf. Coat. Technol. 235, 513–520 (2013)

    Article  Google Scholar 

  28. Brug G.J., Vanden Eeden A.L.G., Sluyters-Rehbach M., Sluyters J.H.: The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. 176, 275–295 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Fattah-alhosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattah-alhosseini, A., Jalali, A. & Felegari, S. Electrochemical Behavior of the Passive Films Formed on Alloy 22 (UNS N06022) in Acidic Solutions. Arab J Sci Eng 40, 2985–2991 (2015). https://doi.org/10.1007/s13369-015-1768-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1768-9

Keywords

Navigation