Skip to main content
Log in

Numerical Study of a Nonlinear Diffusion Model for Washing of Packed Bed of Cylindrical Fiber Particles

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A nonlinear model representing particle diffusion and molecular diffusion is considered in this paper. The equations are converted into dimensionless form involving Peclet and Biot numbers. The model is discretized in axial and radial domains using a cubic spline collocation method. The system of differential algebraic equations is obtained and is solved using MATLAB ODE15s. Using the actual plant data, the results are examined in terms of relative error. A uniform convergence of order two is established. Also, the model is simulated to study the effect of different parameters on exit solute concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

Permeability coefficient (m2)

c :

Solute concentration in the fluid (kg/m3)

C F :

Consistency of fibers (kg/m3)

C 0 :

Concentration of solute inside the vat (kg/m3)

D F :

Intrafiber diffusion coefficient (m2/s)

D L :

Longitudinal dispersion coefficient (m2/s)

K :

Dimensionless volumetric equilibrium constant

k f :

Film mass transfer coefficient (m/s)

k 1, k 2 :

Mass transfer coefficients (1/s)

L :

Thickness of packed bed (m)

n :

Solute concentration adsorbed on the fibers (kg/kg)

N 0 :

Initial concentration of solute adsorbed on the fibers (kg/kg)

q :

Concentration of solute inside the pores (kg/m3)

r :

Radial position solute in particle (m)

R :

Fiber radius (m)

Re :

Reynolds number, (= 4ru ρ/μ), dimensionless

t :

Time (s)

u :

Interstitial velocity of liquor through the bed (m/s)

z :

Variable thickness of packed bed (m)

ω :

Porosity of the particle

ɛ :

Porosity of the cake

μ :

Liquid viscosity (Pa s)

ρ :

Liquid density (kg/m3)

References

  1. Brenner H.: The diffusion model of longitudinal mixing in beds of finite length. Numerical values. Chem. Eng. Sci. 17, 229–243 (1962)

    Article  Google Scholar 

  2. Sherman W.R.: The movement of a soluble material during the washing of a bed of packed solids. AIChE 10(6), 855–860 (1964)

    Article  Google Scholar 

  3. Neretnieks I.: A mathematical model for continuous counter current adsorption. Svensk Papperstidning 11, 407–411 (1974)

    Google Scholar 

  4. Pellett G.L.: Longitudinal dispersion, intraparticle diffusion, and liquid-phase mass transfer during flow through multiparticle systems. Tappi 49(2), 75–82 (1966)

    Google Scholar 

  5. Grahs, L.E.: Washing of cellulose fibres, analysis of displacement washing operation. Ph.D. Thesis. Chalmers University of Technology, Goteborg, Sweden (1974)

  6. Cocero M.J., Garcia J.: Mathematical model of supercritical extraction applied to oil seed extraction by CO2 + saturated alcohol—I. Desorption model. J. Supercrit. Fluids 20, 229–243 (2001)

    Article  Google Scholar 

  7. Liu F., Bhatia S.K.: Computationally efficient solution techniques for adsorption problems involving steep gradients bidisperse particles. Comput. Chem. Eng. 23, 933–943 (1999)

    Article  Google Scholar 

  8. Raghvan N.S., Ruthven D.M.: Numerical simulation of a fixed bed adsorption column by the method of orthogonal collocation. AIChE 29(6), 922–925 (1983)

    Article  Google Scholar 

  9. Al-Jabari M., Van Heiningen A.R.P., Van De Ven T.G.M.: Modeling the flow and the deposition of fillers in packed bed of pulp fibers. J. Pulp Pap. Sci. 20(9), J249–J253 (1994)

    Google Scholar 

  10. Sridhar P., Sastri N.V.S., Modak J.M., Mukherjee A.K.: Mathematical simulation of bioseparation in an affinity packed column. Chem. Eng. Technol. 17, 422–429 (1994)

    Article  Google Scholar 

  11. Potůček F.: Chemical engineering view of pulp washing. Papir a celulóza 60(4), 114–117 (2005)

    Google Scholar 

  12. Potůček F.: Displacement washing of pulp I. Dispersion model for non ideal flow. Papir a celulóza 56(1), 8–11 (2001)

    Google Scholar 

  13. Potůček F.: Washing of pulp fiber bed. Collect. Czech. Chem. Commun. 62, 626–644 (1997)

    Article  Google Scholar 

  14. Kill S., Bhatia S.K.: Solution of adsorption problems involving steep moving profiles. Comput. Chem. Eng. 22(7–8), 893–896 (1998)

    Article  Google Scholar 

  15. Saritha N.V., Madras G.: Modeling the chromatographic response of inverse size-exclusion chromatography. Chem. Eng. Sci. 56, 6511–6524 (2001)

    Article  Google Scholar 

  16. Farooq S., Karimi I.A.: Dispersed plug flow model for steady state laminar flow in a tube with a first order sink at the wall. Chem. Eng. Sci. 58, 71–80 (2003)

    Article  Google Scholar 

  17. Arora S., Dhaliwal S.S., Kukreja V.K.: Simulation of washing of packed bed of porous particles by orthogonal collocation on finite elements. Comput. Chem. Eng. 30, 1054–1060 (2006)

    Article  Google Scholar 

  18. Arora S., Potůček F.: Modelling of displacement of washing of pulp: comparison between model and experimental data. Cell Chem. Technol. 43(7–8), 307–315 (2009)

    Google Scholar 

  19. Ahmed S.G.: A numerical algorithm for solving advection–diffusion equation with constant and variable coefficients. Open Numer. Methods. J. 4, 1–7 (2012)

    Article  MathSciNet  Google Scholar 

  20. Guraslan G., Sari M.: Numerical solutions of linear and nonlinear diffusion equations by a differential quadrature method. Int. J. Numer. Methods Biomed. Eng. 27, 69–77 (2011)

    Article  Google Scholar 

  21. Hasson D., Drak A., Yang Q., Semiat R.: Effect of axial dispersion on the concentration polarization level in spiral wound modules. Desalination 199, 451–453 (2006)

    Article  Google Scholar 

  22. Kar M., Sahoo S.N., Rath P.K., Dash G.C.: Heat and mass transfer effects on a dissipative and radiative visco-elastic MHD flow over a stretching porous sheet. AJSE 39(05), 3393–3401 (2014)

    MathSciNet  Google Scholar 

  23. Mohebbi A., Dehghan M.: High-order compact solution of the one-dimensional heat and advection–diffusion equations. Appl. Math. Model. 34, 3071–3084 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Okhovat A., Heris S.Z., Asgarkhani M.A.H., Fard K.M.: Modeling and simulation of erosion–corrosion in disturbed two-phase flow through fluid transport pipelines. AJSE 39(03), 1497–1505 (2014)

    MathSciNet  Google Scholar 

  25. Roininen J., Alopaeus V.: The moment method for one-dimensional dynamic reactor models with axial dispersion. Comput. Chem. Eng. 35, 423–433 (2011)

    Article  Google Scholar 

  26. de Boor C., Swartz B.: Collocation at Gaussian points. SIAM J. Numer. Anal. 10, 582–606 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  27. Botella O.: On a B-spline Collocation method for the solution of the Navier–Stokes equations. Comput. Fluids 31, 397–420 (2001)

    Article  MathSciNet  Google Scholar 

  28. Fairweather G., Meade D.: A survey of spline collocation methods for the numerical solution of differential equations. Math. Large Scale Comput. 120, 297–341 (1989)

    MathSciNet  Google Scholar 

  29. Gupta B., Kukreja V.K.: Numerical approach for solving diffusion problems using cubic B-spline collocation method. Appl. Math. Comput. 219, 2087–2099 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Johnson R.W.: Higher order B-spline collocation at the Greville abscissae. Appl. Numer. Math. 52, 63–75 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mazzia F., Sestini A., Trigiante D.: B-spline linear multistep methods and their continuous extensions. SIAM J. Numer. Anal. 44, 1954–1973 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Saka B., Dağ I.: A numerical study of the Burgers’ equation. J. Frankl. Inst. 345, 328–348 (2008)

    Article  MATH  Google Scholar 

  33. Arora S., Potůček F.: Verification of mathematical model fro displacement washing of kraft pulp fibers. Indian J. Chem. Technol. 19, 140–148 (2012)

    Google Scholar 

  34. de Boor C.: A Practical Guide to Splines. Springer, New York (1978)

    Book  MATH  Google Scholar 

  35. Prenter P.M.: Splines and Variational Methods. Wiley Interscience Publication, New York (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Kukreja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, B., Kukreja, V.K., Parumasur, N. et al. Numerical Study of a Nonlinear Diffusion Model for Washing of Packed Bed of Cylindrical Fiber Particles. Arab J Sci Eng 40, 1279–1287 (2015). https://doi.org/10.1007/s13369-015-1633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1633-x

Keywords

Navigation