Skip to main content
Log in

Comparative Study of Electrical Conductivity on Activated Carbons Prepared from Various Cellulose Materials

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The objective of this study was to calculate the electrical conductivity of the activated carbons obtained from various cellulose materials (sugarcane bagasse, rice straw, cotton cloth and waste newspaper) by a two-stage process. The DC conductivity was calculated by a two-probe method. Scanning electron microscopy and X-ray analysis confirmed the surface morphology and formation of graphene multilayer, respectively. The carbonization temperature has a distinct effect on the electrochemical performances of the cellulose materials. The activated carbon compressed at 750.12 kPa offered the highest electrical conductivity for all the other samples. It may be due to the dense packing of the material, collapse of the pores and decrease in air gap between the carbon particles as well as a combination of multilayer graphene, which could be the factors accountable for the increase in conductivity with compression pressures. The conductivity increases with an increase in the temperature. In addition, all the carbon samples showed a good electrochemical property and the specific capacitance at the scan rate of 2–3 mV/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spain, I.L.: In: Walker, P,L; Thrower, P.A, (eds.). Chem. Phys. Carbon, Marcel Dekker New York (1994)

  2. Gonzalez J.S., Garia A.M.: Electrical conductivity of carbon blacks under compression. Carbon 43, 741–747 (2005)

    Article  Google Scholar 

  3. Tans S.J., Devoret M.H., Dal H.: Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997)

    Article  Google Scholar 

  4. Mrozowski, S.: In: Proceedings 3rd Carbon Conference, Buffalo, USA (1957)

  5. Holm R.: Electrical Contacts. H Geben, Stockholm (1946)

    Google Scholar 

  6. Imasogie B.I., Wendt U.: Characterization of graphite particle shape in spheroidal graphite iron using a computer-based image analyzer. J. Miner. Mater. Charact. Eng. 3, 1–12 (2004)

    Google Scholar 

  7. Kinoshita K.: Electrochemical and Physical Properties, Carbon, Chapter 2.5. Wiley, New York (1988)

    Google Scholar 

  8. Pantea D., Darmstadt H., Kaliaguine S.: Electrical conductivity of thermal carbon blacks: influence of surface chemistry. Carbon 39, 1147–1158 (2001)

    Article  Google Scholar 

  9. Pantea D., Darmstadt H., Kaliaguine S.: Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology. Appl. Surf. Sci. 217, 181–193 (2003)

    Article  Google Scholar 

  10. Cheol-Min Y., Yong-Jung K., Morinobu E.: Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanhorns. J. Am. Chem. Soc. 129, 20–21 (2007)

    Article  Google Scholar 

  11. Saito Y., Tsujimoto Y., Koshio A.: Field emission patterns from multiwall carbon nanotubes with a cone-shaped tip. Appl. Phys. Lett. 90, 213108-3 (2007)

    Google Scholar 

  12. Sanchez G.R., Bruno M.M., Thomas Y.R.J.: Mesoporous carbon supported nanoparticulated PdNi2: a methanol tolerant oxygen reduction electrocatalyst. Int. J. Hydrogen Energy 37, 31–40 (2012)

    Article  Google Scholar 

  13. Pagona G., Tagmatarchis N., Fan J.: Cone-end functionalization of carbon nanohorns. Chem. Mater. 18, 3918–3920 (2006)

    Article  Google Scholar 

  14. Klemm D., Philipp B., Heinze T.: Comprehensive Cellulose Chemistry. Wiley VCH, Chichester (1998)

    Book  Google Scholar 

  15. Angin, D.: Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions. Bioresour. Technol. (2014). doi:10.1016/j.biortech.2014.02.100

  16. Juan C.M.P., Liliana G.: Comparison of the oxidation of phenol with iron and copper supported on activated carbon from coconut shells. Arab. J. Sci. Eng. 38(1), 49–57 (2013)

    Article  Google Scholar 

  17. Amrita J., Tripathi S.K.: Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode. Mater. Sci. Eng.B 183, 54–60 (2014)

    Article  Google Scholar 

  18. Mussatto, S.I.; Teixeira, J.A.: Lignocellulose as raw material in fermentation processes. In: Méndez-Vilas, A. (ed.) Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, vol 2, pp. 897–907. Formatex Research Center, Badajoz (2010)

  19. Daud W.M.A.W., Ali W.S.W., Sulaiman M.Z.: The effects of carbonization temperature on pore development in palm-shell-based activated carbon. Carbon 38, 1925–1932 (2000)

    Article  Google Scholar 

  20. Suhas P.J.M., Carrott M.M.L., Carrott R.: Lignin—from natural adsorbent to activated carbon: a review. Bioresour. Technol. 98, 2301–2312 (2007)

    Article  Google Scholar 

  21. Kumar K.S., Huerta G.V., Castellanos A.R.: Microwave assisted synthesis and characterizations of decorated activated carbon. Int. J. Electrochem. Sci. 7, 5484–5494 (2012)

    Google Scholar 

  22. Toles C.A., Marshall W.E., Johns M.M., Lynda H., Wartelle L.H., McAloon A.: Acid-activated carbons from almond shells: physical, chemical and adsorptive properties and estimated cost of production. Bioresour. Technol. 71, 87–92 (2000)

    Article  Google Scholar 

  23. Fierro V., Fernandez T.V., Celzard A.: Study of the decomposition of kraft lignin impregnated with orthophosphoric acid. Thermochim. Acta 433, 142–148 (2005)

    Article  Google Scholar 

  24. Montane D., Fernandez T.V., Fierro V.: Activated carbons from lignin: kinetic modeling of the pyrolysis of Kraft lignin activated with phosphoric acid. J. Chem. Eng. Data 106, 1–12 (2005)

    Article  Google Scholar 

  25. Trassl S., Motz G., Rossler E., Ziegler G.: Characterisation of the free-carbon phase in precursor-derived SiCN ceramics. J. Non-Cryst. Solids 293, 261–267 (2001)

    Article  Google Scholar 

  26. Holm, R.: In: Electric Contacts: Theory and Applications. Springer, Berlin (1967)

  27. Donnet J.B., Voet A.: Carbon Black: Physics, Chemistry, and Elastomer Reinforcement. Marcel Dekker, New York (1976)

    Google Scholar 

  28. Celzard A., Mareche J.F., Payo F.: Electrical conductivity of carbonaceous powder. Carbon 40, 2801–2815 (2001)

    Article  Google Scholar 

  29. Pastor A.C., Rodriguez R., Marsh R.H.: Preparation of activated carbon cloths from viscous rayon. Part I. Carbonization procedures. Carbon 37, 1275–1283 (1999)

    Article  Google Scholar 

  30. Liao L., Wu C., Yanyongjie Y.: Chemical elemental characteristics of biomass fuels in China. Biomass. Bioenerg. 27, 119–130 (2004)

    Article  Google Scholar 

  31. Van Soest P.J.: Rice straw, the role of silica and treatments to improve quality Anim. Feed. Sci. Technol. 130, 137–171 (2006)

    Article  Google Scholar 

  32. Raveendran K., Anuraddha G., Kartick C.: Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74, 1812–1822 (1995)

    Article  Google Scholar 

  33. Yalcin N., Sevnic V.: Studies on silica obtained from rice husk. Ceram. Int. 27, 219–224 (2001)

    Article  Google Scholar 

  34. Wang T.H., Tan S.X., Liang C.H.: Using oxidation to increase the electrical conductivity of carbon nanotube electrodes. Carbon 47, 1867–1870 (2009)

    Article  Google Scholar 

  35. Inagaki M.: Pores in carbon materials-importance of their control. New Carbon Mater. 24, 193–232 (2009)

    Article  Google Scholar 

  36. Parikh D.V., Thibodeaux D.P., Condon B.: X-ray crystallinity of bleached and crosslinked cottons. Text. Res. J. 77, 612–616 (2007)

    Article  Google Scholar 

  37. Adinaveen T., Kennedy L.J., Vijaya J.J.: Studies on structural, morphological, electrical and electrochemical properties of activated carbon prepared from sugarcane bagasse. J. Ind. Eng. Chem. 19, 1470–1476 (2013)

    Article  Google Scholar 

  38. Senthilkumar S.T., Senthilkumar B., Balaji S.: Preparation of activated carbon from sorghum pith and its structural and electrochemical properties. Mater. Res. Bull. 46, 413–419 (2011)

    Article  Google Scholar 

  39. Dubinin M.M., Serpinsky V.V.: Isotherm equation for water vapour adsorption by microporous carbonaceous adsorbents. Carbon 19, 402–403 (1981)

    Article  Google Scholar 

  40. Guo Y., Yang Y., Wang Z.: The preparation and mechanism studies of rice husk based porous carbon. Mater. Chem. Phys. 74, 320–323 (2002)

    Article  Google Scholar 

  41. Fierro V., Muniz G., Basta A.H., El-Saied H., Celzard A.: Rice straw as precursor of activated carbons: activation with ortho-phosphoric acid. J. Hazard. Mater. 181, 27–32 (2010)

    Article  Google Scholar 

  42. Jeong E., Jung M.J., Lee Y.K.: Role of fluorination in improvement of the electrochemical properties of activated carbon nanofiber electrodes. J. Fluor. Chem. 150, 98–103 (2013)

    Article  Google Scholar 

  43. Derbyshire, F.; Jagtoyen, M.; Thwaites, M.: In: Patrick, J.W. (ed.) Activated Carbons-Production and Application. Halsted Press, pp. 227–252 (1995)

  44. Jagtoyen M., Derbyshire F.: Activated carbons from yellow poplar and white oak by H3 PO4 activation. Carbon 36, 1085–1097 (1998)

    Article  Google Scholar 

  45. Tsai W.T., Chang C.Y., Lin M.C., Chien S.F., Sun H.F., Hsieh M.F.: Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation. Chemosphere 45, 51–58 (2001)

    Article  Google Scholar 

  46. Spain I.L.: Electronic transport properties of graphite, carbons, and related materials. In: Walker, P.L., Thrower, P.A. (eds.) Chemistry and Physics of Carbon, Marcel Dekker, New York (1981)

    Google Scholar 

  47. Marchand A., Figueiredo J.L., Moulijn J.A.: Carbon and Coal Gasification. Martinus Nijhoff, Dordrecht (1986)

    Google Scholar 

  48. Leon Y.C.A., Radovic L.R.: Interfacial chemistry and electrochemistry of carbon surfaces. In: Thrower, P. (ed.) Chemistry and Physics of Carbon, Marcel Dekker, New York (2001)

    Google Scholar 

  49. Kalyani P., Anitha A.: Biomass carbon & its prospects in electrochemical energy, systems. Int. J. Hydrogen Energy 38, 4034–4045 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Judith Vijaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adinaveen, T., Vijaya, J.J. & Kennedy, L.J. Comparative Study of Electrical Conductivity on Activated Carbons Prepared from Various Cellulose Materials. Arab J Sci Eng 41, 55–65 (2016). https://doi.org/10.1007/s13369-014-1516-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1516-6

Keywords

Navigation