Skip to main content
Log in

Polymer–Fullerene Bulk Heterojunction-Based Strain-Sensitive Flexible Organic Field-Effect Transistor

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, we have fabricated organic field-effect transistor using the blend of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methylester as active layer. Transistor was fabricated in MESFET-type configuration with top gate and bottom drain/source contacts on flexible PET substrate. Drain and source contacts were made using silver (Ag), whereas gate contact was made by depositing aluminium (Al) on the active layer. Active layer showed ohmic-type contact with drain/source electrodes and Schottky-type contact with gate electrode, which was discussed with the help of energy band diagram. Current–Voltage (IV) characteristics of the transistor were found similar to p-type mode IV characteristics of a typical low-voltage ambipolar field-effect transistor. Strain sensing properties of the device were investigated by bending it at 0° and 90° with respect to the direction of drain-to-source current for different strains of 1, 1.6, and 3.2 %. Significant proportional variation in the drain-to-source current was observed due to the bending from both sides; however, sensitivity of the device was found higher when strain was applied at 90° with respect to drain-to-source current. Sensitivity values were found to be equal to 0.18 and 0.65 μA/ % when a constant bending strain of 3.2 % was applied at 0° and 90° with respect to the direction of drain-to-source current, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sirringhaus H.: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319–1335 (2014)

    Article  Google Scholar 

  2. Abdulrazzaq O.A., Saini V., Bourdo S., Dervishi E., Biris A.S.: Organic solar cells: a review of materials, limitations, and possibilities for improvement. Part. Sci. Technol. 31, 427–442 (2013)

    Article  Google Scholar 

  3. Murawski C., Leo K., Gather M.C.: Efficiency roll-off in organic light-emitting diodes. Adv. Mater. 25, 6801–6827 (2013)

    Article  Google Scholar 

  4. Baeg, K.J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y.Y.: Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25, 4267–4295 (2013)

  5. Knopfmacher O., Hammock M.L., Appleton A.L., Schwartz G., Mei J., Lei T., Pei J., Bao Z.: Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 5, 2954 (2014)

    Article  Google Scholar 

  6. Trung T.Q., Tien N.T., Seol Y.G., Lee N.-E.: Transparent and flexible organic field-effect transistor for multi-modal sensing. Org. Electron. 13, 533–540 (2012)

    Article  Google Scholar 

  7. Hsu Y.-J., Jia Z., Kymissis I.: A locally amplified strain sensor based on a piezoelectric polymer and organic field-effect transistors. IEEE Trans. Electron Devices 58, 910–917 (2011)

    Article  Google Scholar 

  8. Jung S., Jackson T.: Organic semiconductor strain sensors. IEEE Dev. Res. Conf. Dig. 1, 149–150 (2005)

    Google Scholar 

  9. Cosseddu P., Milita S., Bonfiglio A.: Strain sensitivity and transport properties in organic field-effect transistors. IEEE Electron Device Lett. 33, 113–115 (2012)

    Article  Google Scholar 

  10. Scenev V., Cosseddu P., Bonfiglio A., Salzmann I., Severin N., Oehzelt M., Koch N., Rabe J.P.: Origin of mechanical strain sensitivity of pentacene thin-film transistors. Org. Electron. 14, 1323–1329 (2013)

    Article  Google Scholar 

  11. Yang C., Yoon J., Kim S.H., Hong K., Chung D.S., Heo K., Park C.E., Ree M.: Bending-stress-driven phase transitions in pentacene thin films for flexible organic field-effect transistors. Appl. Phys. Lett. 92, 243305 (2008)

    Article  Google Scholar 

  12. Sekitani T., Kato Y., Iba S., Shinaoka H., Someya T.: Bending experiment on pentacene field-effect transistors on plastic films. Appl. Phys. Lett. 86, 073511 (2005)

    Article  Google Scholar 

  13. Jung, S.; Ji, T.; Xie, J.; Varadan, V.K.: Flexible strain sensors based on pentacene-carbon nanotube composite thin films.In: Proceedings of the 7th IEEE International Conference on Nanotechnology, Hong Kong, pp. 375–378 (2007)

  14. Ji T., Jung S., Varadan V.K.: Field-controllable flexible strain sensors using pentacene semiconductors. IEEE Electron Device Lett. 28, 1105–1107 (2007)

    Article  Google Scholar 

  15. Jung S., Ji T., Varadan V.K.: Pentacene-based low-voltage strain sensors with PVP/Ta 2 O 5 hybrid gate dielectrics. IEEE Trans. Electron Devices 57, 391–396 (2010)

    Article  Google Scholar 

  16. Braga D., Campione M., Borghesi A., Horowitz G.: Organic metal-semiconductor field-effect transistor (OMESFET) fabricated on a rubrene single crystal. Adv. Mater. 22, 424–428 (2010)

    Article  Google Scholar 

  17. Karimov K.S., Saleem M., Mahroof-Tahir M., Khan T.A., Khan A.: Pressure sensitive organic field effect transistor. Phys. E 43, 547–551 (2010)

    Article  Google Scholar 

  18. Karimov K.S., Qasuria T.A.: The use of displacement sensitive organic field effect transistor for telemetry system applications. Measurement 45, 41–46 (2012)

    Article  Google Scholar 

  19. Dang M.T., Hirsch L., Wantz G.: P3HT: PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23, 3597–3602 (2011)

    Article  Google Scholar 

  20. Karimov K.S., Akhmedov K.M., Dzhuraev A.A., Khan M.N., Abrarov S.M., Fiodorov M.I.: Organic-on-inorganic Ag/n–GaAs/p–CuPc/Ag photoelectric sensor. Eurasian Chem Technol J 2, 251–256 (2000)

    Google Scholar 

  21. Hwang H., Kim H., Nam S., Bradley D.D., Ha C.S., Kim Y.: Organic phototransistors with nanoscale phase-separated polymer/polymer bulk heterojunction layers. Nanoscale 3, 2275–2279 (2011)

    Article  Google Scholar 

  22. Hong J.-P., Park A.-Y., Lee S., Kang J., Shin N., Yoon D.Y.: Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilylethynyl pentacene organic thin film transistors. Appl. Phys. Lett. 92, 143311 (2008)

    Article  Google Scholar 

  23. Szendrei, K.; Jarzab, D.; Chen, Z.; Facchetti, A.; Loi, M.A.: Ambipolar all-polymer bulk heterojunction field-effect transistors. J. Mater. Chem. 20, 1317–1321 (2010)

  24. Głowacki E.D., Leonat L., Voss G., Bodea M.-A., Bozkurt Z., Ramil A.M., Irimia-Vladu M., Bauer S., Sariciftci N.S.: Ambipolar organic field effect transistors and inverters with the natural material Tyrian purple. AIP Adv. 1, 042132 (2011)

    Article  Google Scholar 

  25. Chen Y.-F., Fuhrer M.S.: Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 236803 (2005)

    Article  Google Scholar 

  26. Meric I., Han M.Y., Young A.F., Ozyilmaz B., Kim P., Shepard K.L.: Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3, 654–659 (2008)

    Article  Google Scholar 

  27. Kim C.H., Tondelier D., Geffroy B., Bonnassieux Y., Horowitz G.: Operating mechanism of the organic metal-semiconductor field-effect transistor (OMESFET). Eur. Phys. J. Appl. Phys. 56, 34105 (2011)

    Article  Google Scholar 

  28. Takshi A., Dimopoulos A., Madden J.D.: Depletion width measurement in an organic Schottky contact using a metal- semiconductor field-effect transistor. Appl. Phys. Lett. 91, 083513 (2007)

    Article  Google Scholar 

  29. Neamen, D.A.: Semiconductor Physics and Devices: Basic Principles. Richard D. Irwin Inc., Boston (1992)

  30. Murtaza I., Karimov K.S., Ahmad Z., Qazi I., Mahroof-Tahir M., Khan T.A., Amin T.: Humidity sensitive organic field effect transistor. J. Semicond. 31, 054001 (2010)

    Article  Google Scholar 

  31. Takshi, A.: Organic metal-semiconductor field-effect transistor (OMESFET). Ph.D. Dissertation (2007)

  32. Jung S., Ji T., Varadan V.K.: Point-of-care temperature and respiration monitoring sensors for smart fabric applications. Smart Mat. Struct. 15, 1872–1876 (2006)

    Article  Google Scholar 

  33. Zhou L., Jung S., Brandon E., Jackson T.N.: Flexible substrate micro-crystalline silicon and gated amorphous silicon strain sensors. IEEE Trans. Electron Devices 53, 380–385 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Yasin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasin, M., Tauqeer, T., Rahman, H.U. et al. Polymer–Fullerene Bulk Heterojunction-Based Strain-Sensitive Flexible Organic Field-Effect Transistor. Arab J Sci Eng 40, 257–262 (2015). https://doi.org/10.1007/s13369-014-1508-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1508-6

Keywords

Navigation