Skip to main content

Advertisement

Log in

Modeling and Optimization of Biohydrogen Production from De-oiled Jatropha Using the Response Surface Method

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, optimization of hydrogen fermentation process from de-oiled Jatropha waste using a central composite design was modeled. A series of batch assays was performed at various substrate concentrations (32–368 g/L), temperatures (38–72°C) and pHs (4.8–8.2) according to the experimental design. The optimal conditions for cumulative hydrogen production (CHP) were determined by response surface methodology. The optimal substrate concentration, pH and temperature values were 211g/L, 6.5 and 55.4°C, respectively. Under these circumstances, the highest achievable CHP of 296 mL H2 was predicted. To validate the model, verification experiments were conducted. The results were satisfactorily matched with the statistically estimated values with peak CHP value of 307.4 ± 4.5mL H2. Microbial community profiling (PCR-DGGE) has revealed that the dominant bacterial community present belonged to Clostridium thermopalmarium, Clostridium buytricum, Bacillus ginsengihumi and Bacillus coagulans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hallenbeck P.C, Benemen JR.: Biological hydrogen production: fundamentals and limiting process. Int. J. Hydrogen Energy. 27, 1185–1193 (2002)

    Article  Google Scholar 

  2. Chakrabarti M.H., Ali M., Usmani J.N., Baroutian S., Saleem M.: Technical evaluation of pongame and Jatropha B20 fuels in Pakistan. Arab. J. Sci. Eng. 38(4), 759–766 (2013)

    Article  Google Scholar 

  3. Das D., Veziroglu TN.: Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy. 26, 13–28 (2001)

    Article  Google Scholar 

  4. Azarpour A., Suhaimi S., Zahedi G., Bahadori A.: A review on the drawbacks of renewable energy as a promising energy source of the future. Arab. J. Sci. Eng. 38(2), 317–328 (2013)

    Article  Google Scholar 

  5. Hallenbeck PC., Ghosh D.: Advances in fermentative biohydrogen production: the way forward?. Trends Biotechnol. 27, 287–297 (2009)

    Article  Google Scholar 

  6. Kumar G., Lin C.Y.: Bioconversion of de-oiled Jatropha waste (DJW) to hydrogen and methane gas: influence of substrate concentration, temperature and pH. Int. J. Hydrogen Energy. 38(1), 63–72 (2013)

    Article  Google Scholar 

  7. Bansal S.K., Sreekrishnan T.R., Singh R.: Effect of heat treated consortia on fermentative biohydrogen production from vegetable waste. Natl. Acad. Sci. Lett. 36(2), 125–131 (2013)

    Article  Google Scholar 

  8. Kumar G., Sen B., Lin C.Y.: Pretreatment and hydrolysis methods for the recovery of fermentable sugars from de-oiled Jatropha waste. Bioresour. Technol. 145, 275–279 (2013)

    Article  Google Scholar 

  9. Kumar G., Lay C.H., Chu C.Y., Wu J.H., Lee S.C, Lin C.Y.: Seed inocula for biohydrogen production from biodiesel solid residues. Int. J. Hydrogen Energy. 37(20), 15489–15495 (2012)

    Article  Google Scholar 

  10. Endo, G.; Noike T.; Matsumoto T.: Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic digestion. Proc. Soc. Civ. Eng. 325, 61-68 (1982, In Japanese)

  11. APHA: Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association New York, USA (1995)

  12. Lin C.Y., Chang R.C.: Hydrogen production during the anaerobic acidogenic conversion of glucose. J. Chem. Technol. Biotechnol. 74, 498–500 (1999)

    Article  Google Scholar 

  13. Owen W.F., Stuckey D.C., Healy J.B., Young L.Y., MacCarty P.L.: Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water. Res. 13, 485–492 (1979)

    Article  Google Scholar 

  14. Chuang Y.S., Lay C.H., Sen B., Chen C.C., Kumar G., Wu J.H., Lin C.S., Lin C.Y.: Biohydrogen and biomethane from water hyacinth (Eichhornia crassipes) fermentation: effects of substrate concentration and incubation temperature. Int. J. Hydrogen Energy. 36(21), 14195–14203 (2011)

    Article  Google Scholar 

  15. Kumar, G.; Lin, C.Y.: Biogenic hydrogen conversion of deoiled Jatropha waste via anaerobic sequencing batch reactor operation: process performance, microbial insights and CO2 reduction efficiency. Sci. World J. doi:10.1155/2014/946503

  16. Sivagurunathan P., Sen B., Lin C.Y.: Batch fermentative hydrogen production by enriched mixed culture: combination strategy and their microbial composition. J. BioSci. Bioeng. 117(2), 222–228 (2014)

    Article  Google Scholar 

  17. Wang J., Wan W.: Factors influencing fermentative hydrogen production: a review. Int. J. Hydrogen Energy. 34(2), 799–811 (2009)

    Article  Google Scholar 

  18. Li C.L., Fang H.H.P.: Fermentative hydrogen production from wastewaters and solid wastes by mixed cultures. Crit. Rev. Env. Sci. Technol. 37, 1–39 (2007)

    Article  Google Scholar 

  19. Li Y.C., Wu S.Y., Chu C.Y., Huang H.C.: Hydrogen production from mushroom farm waste with a two step acid hydrolysis process. Int. J. Hydrogen Energy. 36(21), 14245–14251 (2011)

    Article  Google Scholar 

  20. Chen C.C, Chuang Y.S., Lin C.Y., Lay C.H., Sen B.: Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. Int. J. Hydrogen Energy. 37(20), 15540–15546 (2012)

    Article  Google Scholar 

  21. Lee K.S., Lin P.J., Chang J.S.: Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. Int. J. Hydrogen Energy. 31, 465–472 (2006)

    Article  Google Scholar 

  22. Abreu A.A., Danko A.S., Coasta J.C., Ferreira E.C., Alves M.M.: Inoculum type response to different pHs on biohydrogen production from L-arabinose, a component of hemicellulosic biopolymers. Int. J. Hydrogen Energy. 34, 1744–1751 (2009)

    Article  Google Scholar 

  23. Liu H., Zhang T., Fang H.H.P.: Thermophilic H2 production from a cellulose containing wastewater. Biotechnol. Lett. 25, 365–369 (2003)

    Article  Google Scholar 

  24. Khanna N., Kotay S.M., Gilbert J.J., Das D.: Improvement of biohydrogen production by enterobacter cloacae IIT-BT 08 under regulated pH. J. Biotechnol. 152, 9–15 (2011)

    Article  Google Scholar 

  25. Fang H.H.P., Li C., Zhang T.: Acidophilic biohydrogen production from rice slurry. Int. J. Hydrogen Energy. 31(6), 683–692 (2006)

    Article  Google Scholar 

  26. Guo W.Q., Ren N.Q., Wang X.J., Xiang W.S., Ding J., You Y., Liu B.F.: Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology. Bioresour. Technol. 100, 1192–1196 (2009)

    Article  Google Scholar 

  27. Chong M.L., Abdul Rahman N., Abdul Rahim R., Abdul Aziz S., Shirai Y., Ali Hassan M.: Optimization of biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent using response surface methodology. Int. J. Hydrogen Energy. 34, 7475–7482 (2009)

    Article  Google Scholar 

  28. Kim S.H., Han S.K., Shin H.S.: Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int. J. Hydrogen Energy. 29, 1607–1616 (2004)

    Article  Google Scholar 

  29. Mu Y., Wang G., Yu H.Q.: Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme. Microb. Technol. 38, 905–913 (2006)

    Article  Google Scholar 

  30. Youn J.H., Shin H.K.: Characteristics of biohydrogen production and microbial community as a function of substrate concentration. Environ. Eng. Res. 10, 7–14 (2005)

    Article  Google Scholar 

  31. Geng A., He Y., Qian C., Yan X., Zhou Z.: Effect of key factors on hydrogen production from cellulose in a co culture of Clostridium thermocellum and Clostridium thermopalmurium. Bioresour. Technol. 101(1), 4029–4033 (2010)

    Article  Google Scholar 

  32. Oztekin R., Kapdan I., Kargi F., Argun H.: Comparison of hydrogen gas production from hydrolysed wheat starch and glucose by different anaerobic cultures. Int. J. Nat. Sci. Eng. 3(2), 67–72 (2009)

    Google Scholar 

  33. Walton S.L., Bischoff K.M, van Heinningen A.R.P., Petervan walsum G.: Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL9. J. Ind. Microbiol. Biot. 37, 823–830 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gopalakrishnan Kumar or Sang-Hyoun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Sivagurunathan, P., Kim, SH. et al. Modeling and Optimization of Biohydrogen Production from De-oiled Jatropha Using the Response Surface Method. Arab J Sci Eng 40, 15–22 (2015). https://doi.org/10.1007/s13369-014-1502-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1502-z

Keywords

Navigation