Skip to main content
Log in

Analysis of Tapered Thin Plates Using Basic Displacement Functions

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Presenting new functions, basic displacement functions (BDFs), a novel method is introduced for the analysis of arbitrarily tapered thin plates in preference to primarily mathematically based methodologies. BDFs are obtained through applying unit load theorem and considering two orthogonal strips of unit width in tapered plates based on static deformations. It is shown that new shape functions and consequently structural matrices could be derived in terms of BDFs through a mechanical approach. On the other hand, BDFs could be used to calculate new shape functions, whereas Hermitian functions are used in several elements such as ACM and BFS. It is demonstrated that the accuracy of these new shape functions is significantly improved by considering the geometrical and mechanical properties of the plate element in the evaluation of the structural matrices. So, contrary to usual shape functions used in FE methods, they are susceptible to the thickness variation and then higher accuracy and more rapid convergence could be expected with fewer elements. In order to verify the competency of the proposed method, several numerical examples for classical boundary conditions are carried out and the results are compared with those in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Length of the plate along x direction

b :

Length of the plate along y direction

b :

Vector of BDFs

D(x, y):

Flexural rigidity of the plate at \({(x,y)=(E h^{3}(x,y)/[{12(1-\nu^{2})}])}\)

E :

Young’s modulus of elasticity

F :

Vector of nodal forces

F ii :

Nodal flexibility matrices of i-th node

h(x, y):

Thickness of the plate at (x, y)

i, j :

Indices or positive integers (1, 2, 3, …)

K :

Stiffness matrix of element

l :

Taper factor of the plate in y direction

M :

Mass matrix of element

N :

Vector of shape functions

o′:

A point with arbitrary coordinates (x, y)

q z (x, y):

External transverse load

r :

Taper factor of the plate in x direction

s :

Longitudinal coordinate along plate in x direction

t :

Longitudinal coordinate along plate in y direction

w :

Transverse displacement at (x, y)

x :

Variable along longitudinal coordinate of plate element in x direction

y :

Variable along longitudinal coordinate of plate element in y direction

\({\alpha}\) :

Taper ratio for thickness of plate in the x direction

\({\beta}\) :

Taper ratio for thickness of plate in the y direction

\({{\bf \Delta}_i}\) :

Vector containing \({[w\,{\theta_x}\,{\theta_y}]_i^T}\) for node \({i (i=1,{\ldots},4)}\)

\({\nabla^{2}}\) :

Two-dimensional Laplacian operator

\({{\bf \Sigma}}\) :

Matrix containing nodal stiffness matrices of all nodes

\({\theta_x}\) :

Rotation angle due to bending along x direction

\({\theta_y}\) :

Rotation angle due to bending along y direction

\({\nu}\) :

Poisson’s ratio

\({\rho}\) :

Mass density per unit volume

Ω :

Non-dimensional eigenfrequency \({(=\omega a^{2}\sqrt{{\rho h_1}/{D_1}})}\)

ω :

Eigenfrequency (frequency of free vibration)

References

  1. Leissa A.W.: The free vibration of rectangular plates. J. Sound Vib. 31, 257–293 (1973)

    Article  MATH  Google Scholar 

  2. Liew K.M., Xiang Y., Kitipornchai S.: Transverse vibration of thick rectangular plates—I. Comprehensive sets of boundary conditions. Comput. Struct. 49, 1–29 (1993)

    Article  Google Scholar 

  3. Liew K.M., Hung K.C., Lim M.K.: Vibration of Mindlin plates using boundary characteristic orthogonal polynomials. J. Sound Vib. 182, 77–90 (1995)

    Article  Google Scholar 

  4. Liew K.M., Hung K.C., Lim M.K.: Three-dimensional vibration of rectangular plates: effects of thickness and edge constraints. J. Sound Vib. 182, 709–727 (1995)

    Article  Google Scholar 

  5. Liew K.M., Teo T.M.: Three-dimensional vibration analysis of rectangular plates based on differential quadrature method. J. Sound Vib. 220, 577–599 (1999)

    Article  Google Scholar 

  6. Xing Y., Liu B.: Closed form solutions for free vibrations of rectangular Mindlin plates. Acta Mech. Solida Sin. 25, 689–698 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hashemi S.H., Arsanjani M.: Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates. Int. J. Solids Struct. 42, 819–853 (2005)

    Article  MATH  Google Scholar 

  8. Lim C.W., Cui S., Yao W.A.: On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported. Int. J. Solids Struct. 44, 5396–5411 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Yu S.N., Xiang Y., Wei G.W.: Matched interface and boundary (MIB) method for the vibration analysis of plates. Commun. Numer. Methods Eng. 25, 923–950 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Liu Y., Li R.: Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplectic approach. Appl. Math. Model. 34, 856–865 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu B., Xing Y.: Exact solutions for free in-plane vibrations of rectangular plates. Acta Mech. Solida Sin. 24, 556–567 (2011)

    Article  Google Scholar 

  12. Eftekhari S.A., Jafari A.A.: High accuracy mixed finite element-Ritz formulation for free vibration analysis of plates with general boundary conditions. Appl. Math. Comput. 219, 1312–1344 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Al-Kaabi S.A., Aksu G.: Free vibration analysis of Mindlin plates with parabolically varying thickness. Comput. Struct. 34, 395–399 (1990)

    Article  MATH  Google Scholar 

  14. Malhotra S.K., Ganesan N., Veluswami M.A.: Vibrations of orthotropic square plates having variable thickness (parabolic variation). J. Sound Vib. 119, 184–188 (1987)

    Article  Google Scholar 

  15. Katsikadelis J.T., Sapountzakis E.J.: BEM solution to dynamic analysis of plates with variable thickness. Comput. Mech. 7, 369–379 (1991)

    Article  MATH  Google Scholar 

  16. Kukreti A.R., Farsa J., Bert C.W.: Fundamental frequency of tapered plates by differential quadrature. J. Eng. Mech. ASCE 118, 1221–1238 (1992)

    Article  Google Scholar 

  17. Gutierrez R., Laura P.: Vibrations of rectangular plates with linearly varying thickness and non-uniform boundary conditions. J. Sound Vib. 178, 563–566 (1994)

    Article  Google Scholar 

  18. Gutierrez R., Laura P.: Analysis of vibrating circular plates of non-uniform thickness by the method of differential quadrature. Ocean Eng. 22, 97–100 (1995)

    Article  Google Scholar 

  19. Afonso S.M.B., Hinton E.: Free vibration analysis and shape optimization of variable thickness plates and shells—I. Finite element studies. Comput. Syst. Eng. 6, 27–45 (1995)

    Article  Google Scholar 

  20. Rossi R., Belles P., Laura P.: Transverse vibration of a rectangular cantilever plates with thickness varying in a discontinuous fashion. Ocean Eng. 23, 271–276 (1996)

    Article  Google Scholar 

  21. Bert C.W., Malik M.: Free vibration analysis of tapered rectangular plates by differential quadrature method: a semi-analytical approach. J. Sound Vib. 190, 41–63 (1996)

    Article  Google Scholar 

  22. Barton O.: Fundamental frequency of tapered plates by method of eigensensitivity analysis. Ocean Eng. 26, 565–573 (1999)

    Article  Google Scholar 

  23. Cheung Y.K., Zhou D.: Free vibrations of tapered rectangular plates using a new set of beam functions in Rayleigh–Ritz method. J. Sound Vib. 223, 703–722 (1999)

    Article  Google Scholar 

  24. Bambill D.V., Rossit C.A., Laura P.A.A., Rossi R.E.: Transverse vibrations of an orthotropic rectangular plate of linearly varying thickness and with a free edge. J. Sound Vib. 235, 530–538 (2000)

    Article  Google Scholar 

  25. Ashour A.S.: A semi-analytical solution of the flexural vibration of orthotropic plates of variable thickness. J. Sound Vib. 240, 431–445 (2001)

    Article  MATH  Google Scholar 

  26. Ashour A.S.: Vibration of variable thickness plates with edges elastically restrained against translation and rotation. Thin Wall Struct. 42, 1–24 (2004)

    Article  Google Scholar 

  27. Huang M., Ma X.Q., Sakiyama T., Matuda H., Morita C.: Free vibration analysis of orthotropic rectangular plates with variable thickness and general boundary conditions. J. Sound Vib. 288, 931–955 (2005)

    Article  Google Scholar 

  28. Malekzadeh P., Shahpari S.A.: Free vibration analysis of variable thickness thin and moderately thick plates with elastically restrained edges by DQM. Thin Wall Struct. 43, 1037–1050 (2005)

    Article  Google Scholar 

  29. Shufrin I., Eisenberger M.: Vibration of shear deformable plates with variable thickness—first-order and higher-order analyses. J. Sound Vib. 290, 465–489 (2006)

    Article  Google Scholar 

  30. Xu Y.P., Zhou D.: Three-dimensional elasticity solution for simply supported rectangular plates with variable thickness. J. Strain Anal. Eng. Des. 43, 165–176 (2008)

    Article  Google Scholar 

  31. Civalek Ö.: Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method. Appl. Math. Model. 33, 3825–3835 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Attarnejad R.: Basic displacement functions in analysis of non-prismatic beams. Eng. Comput. 27, 733–745 (2010)

    Article  MATH  Google Scholar 

  33. Attarnejad R., Shahba A.: Basic displacement functions in analysis of centrifugally stiffened tapered beams. AJSE 36(5), 841–853 (2011)

    Google Scholar 

  34. Attarnejad R., Shahba A., Jandaghi Semnani S.: Application of differential transform in free vibration analysis of Timoshenko beams resting on two-parameter elastic foundation. AJSE 35(2), 125–132 (2010)

    Google Scholar 

  35. Attarnejad R., Shahba A., Jandaghi Semnani S.: Analysis of non-prismatic Timoshenko beams using basic displacement functions. Adv. Struct. Eng. 14, 319–332 (2011)

    Article  Google Scholar 

  36. Attarnejad R., Shahba A., Jandaghi Semnani S.: Application of differential transform in free vibration analysis of Timoshenko beams resting on two-parameter elastic foundation. AJSE 35(2), 125–132 (2010)

    Google Scholar 

  37. Shahba A., Attarnejad R., Tavanaie Marvi M., Shahriari V.: Free vibration analysis of non-uniform thin curved arches and rings using adomian modified decomposition method. AJSE 37(4), 965–976 (2012)

    MATH  Google Scholar 

  38. Attarnejad R., Shahba A.: Dynamic basic displacement functions in free vibration analysis of centrifugally stiffened tapered beams: a mechanical solution. Meccanica 46, 1267–1281 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Pachenari, Z; Attarnejad, R.: Free vibration of tapered Mindlin plates using basic displacement functions. AJSE 39(6), 4433–4449 (2014). doi:10.1007/s13369-014-1071-1

  40. Szilard R.: Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods. Wiley, New Jersey (2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Attarnejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pachenari, Z., Attarnejad, R. Analysis of Tapered Thin Plates Using Basic Displacement Functions. Arab J Sci Eng 39, 8691–8708 (2014). https://doi.org/10.1007/s13369-014-1407-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1407-x

Keywords

Navigation