Skip to main content
Log in

Wavelet and Neural Network-Based Fault Location in Power Systems Using Statistical Analysis of Traveling Wave

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper describes a traveling wave-based fault location in power systems without using global positioning system (GPS) timing. To extract the transient wave from the recorded waves at the bus bars, wavelet denoising is used. The residual signal in this procedure has a large amount of information about the fault. The proposed algorithm uses the statistical analysis parameters of the traveling wave as the inputs of a defined artificial neural network. All the possible fault types are generated using the ATP-EMTP and results are discussed. Extensive simulation studies indicate that proposed network has a reliable response. 0.92 % Average error shows the power of this algorithm against the reactance-based techniques. In contrary, this is a higher error than the traveling wave-based fault location using GPS timing. Nevertheless, in proposed method because of omitting complicated utilities such as GPS receiver, the costs will be decreased and a higher degree of performance in an efficient manner is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GPS:

Global positioning system

ANN:

Artificial neural network

FT:

Fourier transform

STFT:

Short time-Fourier transform

WT:

Wavelet transform

DWT:

Discrete wavelet transform

D:

Detail component

A:

Approximation component

SLG:

Single line to ground

DLG:

Double line to ground

LL:

Line to line

LLL:

Line to line to line

LLG:

Line to line to ground

a 0 :

Fixed dilation step parameter

b 0 :

Location parameter

u i (k):

The ith input to the network

h j (k):

The sum of inputs to the jth recurrent neuron

y j (k):

The output of the jth recurrent neuron

o(k):

The output of network

g :

The activation function

W I :

Input weight

W H :

Recurrent weight

W O :

Output weight

η :

The learning rate

α :

The momentum factor

References

  1. Mora-Florez J., Melendez J., Caicedo G.C.: Comparison of impedance based fault location methods for power distribution systems. J. Electr. Power Syst. Res. 78(4), 657–666 (2008)

    Article  Google Scholar 

  2. Izykowski J., Rosolowski E., Saha M.M.: Postfault analysis of operation of distance protective relays of power transmission lines. IEEE Trans. Power Deliv. 22(1), 74–81 (2007)

    Article  Google Scholar 

  3. Srinivasan K., St.-Jacques A.: A new fault location algorithm for radial transmission lines with loads. IEEE Trans. Power Deliv. 4(3), 1676–1682 (1989)

    Article  Google Scholar 

  4. Girgis A.A., Hart D.G., Peterson W.L.: A new fault location technique for two-and three-terminal lines. IEEE Trans. Power Deliv. 7(1), 98–107 (1992)

    Article  Google Scholar 

  5. El-Hami M., Lai L.L., Daruvala D.J., Johns A.T.: A new travelling-wave based scheme for fault detection on overhead power distribution feeders. IEEE Trans. Power Deliv. 7(4), 1825–1833 (1992)

    Article  Google Scholar 

  6. Jie L., Elangovan S., Devotta X.: Adaptive traveling wave protection algorithm using two correlation functions. IEEE Trans. Power Deliv. 14(1), 126–131 (1999)

    Google Scholar 

  7. Spoor D., Zhu J.G.: Improved single-ended traveling-wave fault-location algorithm based on experience with conventional substation transducers. IEEE Trans. Power Deliv. 21(3), 1714–1720 (2006)

    Article  Google Scholar 

  8. Xu H.H., Hui Z.B., Lai L.Z.: A novel principle of single-ended fault location technique for EHV transmission lines. IEEE Trans. Power Deli. 18(4), 1147–1151 (2003)

    Article  Google Scholar 

  9. Jafarian P., Sanaye-Pasand M.: A traveling-wave-based protection technique using wavelet/PCA analysis. IEEE Trans. Power Deliv. 25(2), 588–599 (2010)

    Article  Google Scholar 

  10. Kezunovic M., Perunieic B.: Automated transmission line fault analysis using synchronized sampling at two ends. IEEE Trans. Power Syst. 11(1), 441–447 (1996)

    Article  Google Scholar 

  11. Tabatabaei A., Mosavi M. R., Rahmati A.: Fault location techniques in power system based on traveling wave using wavelet analysis and gps timing. J Electr. Rev. 88(6), 347–350 (2012)

    Google Scholar 

  12. Mosavi M.R.: Error reduction for GPS accurate timing in power systems using Kalman filters and neural networks. J. Electr. Rev. 12a, 161–168 (2011)

    Google Scholar 

  13. Mosavi M.R.: Wavelet neural network for corrections prediction in single-frequency GPS users. Neural Process. Lett. 33(2), 137–150 (2011)

    Article  Google Scholar 

  14. Borghetti A., Bosetti M., Nucci C.A., Paolone M., Abur A.: Integrated use of time-frequency wavelet decompositions for fault location in distribution networks: theory and experimental validation. IEEE Trans. Power Deliv. 25(4), 3139–1346 (2010)

  15. Tawfik M., Morcos M.: ANN-based techniques for estimating fault location on transmission lines using prony method. IEEE Trans. Power Deliv. 16(2), 219–224 (2001)

    Article  Google Scholar 

  16. Mazon, A.J.; Zamora, I.; Gracia, J.; Sagastabeutia, K.J.; Saenz, J.R.: Selecting ANN Structures to find transmission faults. IEEE Trans. Comput. Appl. Power 14(3), 44–48 (2001)

  17. Mirzaei M., AbKadir M.Z. A., Moazami E., Hizam H.: Review of fault location methods for distribution power system. Aust. J. Basic Appl. Sci. 3(3), 2670–2676 (2009)

    Google Scholar 

  18. Addison P.S.: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance. Institute of Physics Publishing, Bristol (2002)

    Book  Google Scholar 

  19. Gracia J., Mazón A.J., Zamora I.: Best ANN structures for fault location in single and double-circuit transmission lines. IEEE Trans. Power Deliv. 20(4), 2389–2395 (2005)

    Article  Google Scholar 

  20. Mosavi M.R.: A practical approach for accurate positioning with L1 GPS receivers using neural networks. J Intell. Fuzzy Syst. 17(2), 159–171 (2006)

    Google Scholar 

  21. Mosavi M.R.: GPS receivers timing data processing using neural networks: optimal estimation and errors modeling. J Neural Syst. 17(5), 383–393 (2007)

    Article  Google Scholar 

  22. Ku C.C., Lee K.Y.: Nonlinear system identification using diagonal recurrent neural networks. IEEE Conf. Neural Netw. 3, 839–844 (1992)

    Google Scholar 

  23. Prikler, L.; Holdalen, H.K.: ATP Draw for Windows3.1/95/NT Version 1.0 User’s Manual Release 1.0.1 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Mosavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosavi, M.R., Tabatabaei, A. Wavelet and Neural Network-Based Fault Location in Power Systems Using Statistical Analysis of Traveling Wave. Arab J Sci Eng 39, 6207–6214 (2014). https://doi.org/10.1007/s13369-014-1158-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1158-8

Keywords

Navigation