Skip to main content
Log in

Free Vibration of Tapered Mindlin Plates Using Basic Displacement Functions

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Introducing the concept of basic displacement functions (BDFs) in plate elements, a novel method is proposed to calculate new shape functions of tapered Mindlin plates for the free vibration analysis using BDFs. The BDFs are obtained from dynamic deformations of an arbitrary point in tapered Mindlin plate using Ritz method and substituting boundary equations of Clamped–Clamped–Free–Free plate in them. It is shown that exact shape functions and consequently structural matrices could be derived from BDFs. Unlike current shape functions used in FE method, the new shape functions take thickness variation and eigenfrequencies of the plates into account. So, higher accuracy and more rapid convergence could be expected with fewer elements. To verify the competency of the present shape functions, the results of several numerical examples are compared with those in the literature. It is shown that these shape functions derived from BDFs have quite satisfactory accuracy and low computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Length of the plate along x direction

B b :

Curvature–displacement matrix

B s :

Shear–displacement matrix

b :

Length of the plate along y direction

b :

Vector of BDFs

D b :

Matrix of flexural rigidities

D s :

Matrix of shear rigidities

D(x j ,y j ):

Flexural rigidity of the plate at point j(x j , y j ) (= Eh 3(x j , y j )/[12(1 − v 2)])

d, e, f :

Vectors of the unknown coefficients

E :

Young’s modulus

F :

Vector of nodal forces

F ii :

Nodal flexibility matrices of i-th node

Σ :

Matrix containing nodal stiffness matrices

G :

Shear modulus of elasticity (= E/[2(1 + v)])

h(x j , y j ):

Thickness of the plate at point j(x j , y j )

I d :

The convolution integral

K b :

Flexural stiffness matrix of element

K s :

Shear stiffness matrix of element

K :

Stiffness matrix of element (= K b + K s )

K e :

Elements of matrix K for i, j = d, e, f

M :

Mass matrix of element

M e :

Elements of matrix M for i, j = d, e, f

N :

Vector of shape functions

o′:

A point with arbitrary coordinates (X, Y)

PM:

Mass density per unit area

q z (x, y):

External transverse load

r :

Taper factor of the plate in x direction

s :

Taper factor of the plate in y direction

T :

Kinetic energy of plate in terms of xy - coordinates

t :

Time

U :

Strain energy of plate in terms of xy- coordinates

V(x, y):

Shear force along z direction at point o′(x, y)

w :

Transverse displacement

X m (x), Φ m (x), Y n (y), Ψ n (y):

The appropriate admissible functions

X, Y :

Longitudinal coordinate along plate

x, y :

Dimensionless longitudinal coordinate along plate

α :

Taper ratio for thickness of plate in the x direction

β :

Taper ratio for thickness of plate in the y direction

θ x :

Rotation angle due to bending along x direction

θ y :

Rotation angle due to bending along y direction

κ :

Shear correction factor

ν :

Poisson’s ratio

ξ, η :

Dimensionless longitudinal coordinate along plate element (= 2x/a − 1, 2y/b − 1)

ξ j , η j :

Grid point coordinates along the ξη axis at point j(x j , y j )

Π :

Total energy functional of element

ρ :

Plate density per unit volume

\({\Phi_{i}^{w}, \Phi_{i}^{x}, \Phi_{i}^{y}}\) :

Boundary equations of the plate

Ω :

Non-dimensional eigenfrequency \({(=\omega a^2\sqrt \rho h_1/D_1)}\)

ω :

Eigenfrequency

References

  1. Liew, K.M.; Xiang, Y.; Kitipornchai, S.: Transverse vibration of thick rectangular plates—I. Comprehensive sets of boundary conditions. Comput. Struct. 49, 1–29 (1993)

    Google Scholar 

  2. Liew K.M., Hung K.C., Lim M.K.: A continuum three-dimensional vibration analysis of thick rectangular plate. Int. J. Solids Struct. 30, 3357–3379 (1993)

    Article  MATH  Google Scholar 

  3. Liew K.M., Hung K.C., Lim M.K.: Vibration of Mindlin plates using boundary characteristic orthogonal polynomials. J. Sound Vib. 182, 77–90 (1995)

    Article  Google Scholar 

  4. Liew K.M., Hung K.C., Lim M.K.: Three-dimensional vibration of rectangular plates: effects of thickness and edge constraints. J. Sound Vib. 182, 709–727 (1995)

    Article  Google Scholar 

  5. Liew K.M., Wang C.M., Xiang Y., Kitipornchai S.: Vibration of Mindlin plates: Programming the p-Ritz Method. Elsevier, Oxford (1998)

    Google Scholar 

  6. Hashemi S.H., Arsanjani M.: Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates. Int. J Solids Struct. 42, 819–853 (2005)

    Article  MATH  Google Scholar 

  7. Hashemi S.H., Farhadi S., Carra S.: Free vibration analysis of rotating thick plates. J. Sound Vib. 323, 366–384 (2009)

    Article  Google Scholar 

  8. Zhu B., Leung A.Y.T., Lib Q.S., Lu J.W.Z., Zhang X.C.: Analytical 3-D p-element for quadrilateral plates Part 1: Thick isotropic plate structures. J. Sound Vib. 303, 171–184 (2007)

    Article  Google Scholar 

  9. Xing Y., Liu B.: Exact solutions for the free in-plane vibrations of rectangular plates. Int. J. Mech. Sci. 51, 246–255 (2009)

    Article  MATH  Google Scholar 

  10. Xing Y., Liu B.: Closed form solutions for free vibrations of rectangular Mindlin plates. Acta Mech. Solida Sin. 25, 689–698 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu B., Xing Y.: Exact solutions for free in-plane vibrations of rectangular plates. Acta Mech. Solida Sin. 24, 556–567 (2011)

    Article  Google Scholar 

  12. Chen T., Hu C., Huang W.: Vibration control of cantilevered Mindlin type plates. J. Sound Vib. 320, 221–234 (2009)

    Article  Google Scholar 

  13. Liew K.M., Xiang Y., Kitipornchai S.: Research on thick plate vibration: a literature survey. J. Sound Vib. 180, 163–176 (1995)

    Article  MATH  Google Scholar 

  14. Mikami T., Yoshimura J.: Application of the collocation method to vibration analysis of rectangular Mindlin plates. Comput. Struct. 18, 425–431 (1984)

    Article  MATH  Google Scholar 

  15. Aksu G., Al-Kaabi S.A.: Free vibration analysis of Mindlin plates with linearly varying thickness. J. Sound Vib. 119, 189–205 (1987)

    Article  Google Scholar 

  16. Al-Kaabi S.A., Aksu G.: Free vibration analysis of Mindlin plates with parabolically varying thickness. Comput. Struct. 34, 395–399 (1990)

    Article  MATH  Google Scholar 

  17. Kukreti A.R., Farsa J., Bert C.W.: Fundamental frequency of tapered plates by differential quadrature. J. Eng. Mech. ASCE. 118, 1221–1238 (1992)

    Article  Google Scholar 

  18. Gutierrez R., Laura P.: Vibrations of rectangular plates with linearly varying thickness and non-uniform boundary conditions. J. Sound Vib. 178, 563–566 (1994)

    Article  Google Scholar 

  19. Gutierrez R., Laura P.: Analysis of vibrating circular plates of non-uniform thickness by the method of differential quadrature. Ocean Eng. 22, 97–100 (1995)

    Article  Google Scholar 

  20. Gumeniuk V.S.: Determination of the free vibrations frequencies of variable thickness plates. Dopov. AN Ukr SSR. 2, 130–133 (1956)

    Google Scholar 

  21. Rossi R., Belles P., Laura P.: Transverse vibration of a rectangular cantilever plates with thickness varying in a discontinuous fashion. Ocean Eng. 23, 271–276 (1996)

    Article  Google Scholar 

  22. Barton O.: Fundamental frequency of tapered plates by method of eigensensitivity analysis. Ocean Eng. 26, 565–573 (1999)

    Article  Google Scholar 

  23. Mizusawa T.: Vibration of rectangular Mindlin plates with tapered thickness by the spline strip method. Comput. Struct. 46, 451–463 (1993)

    Article  Google Scholar 

  24. Mizusawa T., Kondo Y.: Application of the spline element method to analyze vibration of skew Mindlin plates with varying thickness in one direction. J. Sound Vib. 241, 485–501 (2001)

    Article  Google Scholar 

  25. Zhou D., Cheung Y.K., Au F.T.K., Lo S.H.: Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method. Int. J. Solids Struct. 39, 6339–6353 (2002)

    Article  MATH  Google Scholar 

  26. Cheung Y.K., Zhou D.: Vibration of tapered Mindlin plates in terms of static Timoshenko beam functions. J. Sound Vib. 260, 693–709 (2003)

    Article  Google Scholar 

  27. Malekzadeh P., Shahpari S.A.: Free vibration analysis of variable thickness thin and moderately thick plates with elastically restrained edges by DQM. Thin Wall Struct. 43, 1037–1050 (2005)

    Article  Google Scholar 

  28. Malekzadeh P., Karami G.: Large amplitude flexural vibration analysis of tapered plates with edges elastically restrained against rotation using DQM. Eng. Struct. 30(11), 2850–2858 (2008)

    Article  Google Scholar 

  29. Civalek Ö.: Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct. 26, 171–186 (2004)

    Article  Google Scholar 

  30. Civalek Ö.: Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method. Int. J. Mech. Sci. 49, 752–765 (2007)

    Article  Google Scholar 

  31. Civalek Ö.: Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method. Appl. Math. Model. 33, 3825–3835 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Civalek Ö., Gürses M.: Free vibration of annular Mindlin plates with free inner edge via discrete singular convolution method. AJSE. 34(1), 81–90 (2009)

    Google Scholar 

  33. Eftekhari S.A., Jafari A.A.: High accuracy mixed finite element-Ritz formulation for free vibration analysis of plates with general boundary conditions. Appl. Math. Comput. 219, 1312–1344 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Attarnejad R.: Basic displacement functions in analysis of non-prismatic beams. Eng. Comput. 27, 733–745 (2010)

    Article  MATH  Google Scholar 

  35. Attarnejad R., Shahba A.: Basic Displacement Functions in Analysis of Centrifugally Stiffened Tapered Beams. AJSE. 36(5), 841–853 (2011)

    Google Scholar 

  36. Attarnejad R., Semnani S.J., Shahba A.: Basic displacement functions for free vibration analysis of non-prismatic Timoshenko beams. Finite Elem. Anal. Des. 46, 916–929 (2010)

    Article  MathSciNet  Google Scholar 

  37. Attarnejad R., Shahba A., Jandaghi Semnani S.: Analysis of non-prismatic Timoshenko beams using basic displacement functions. Adv. Struct. Eng. 14, 319–332 (2011)

    Article  Google Scholar 

  38. Shahba A., Attarnejad R., Eslaminia M.: Derivation of an efficient non-prismatic thin curved beam element using basic displacement functions. Shock Vib. 19, 187–204 (2012)

    Article  Google Scholar 

  39. Shahba A., Attarnejad R., Tavanaie Marvi M., Shahriari V.: Free vibration analysis of non-uniform thin curved arches and rings using adomian modified decomposition method. AJSE. 37(4), 965–976 (2012)

    Google Scholar 

  40. Attarnejad, R.; Shahba, A.; Eslaminia, M.: Dynamic basic displacement functions for free vibration analysis of tapered beams. J. Vib. Control. (2011). doi:10.1177/1077546310396430

  41. Attarnejad R., Shahba A.: Dynamic basic displacement functions in free vibration analysis of centrifugally stiffened tapered beams: A mechanical solution. Meccanica. 46, 1267–1281 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. Attarnejad R., Shahba A., Jandaghi Semnani S.: Application of differential transform in free vibration analysis of timoshenko beams resting on two-parameter elastic foundation. AJSE. 35(2), 125–132 (2010)

    Google Scholar 

  43. Wu L.H., Lu Y.: Free vibration analysis of rectangular plates with internal columns and uniform elastic edge supports by pb-2 Ritz method. Int. J. Mech. Sci. 53, 494–504 (2011)

    Article  Google Scholar 

  44. Hinton E.: Numerical methods and software for dynamic analysis of plates and shells. Pineridge Press, Swansea (1988)

    Google Scholar 

  45. Szilard R.: Theories and applications of plate analysis: classical, numerical and engineering methods. Wiley, New Jersey (2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Attarnejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pachenari, Z., Attarnejad, R. Free Vibration of Tapered Mindlin Plates Using Basic Displacement Functions. Arab J Sci Eng 39, 4433–4449 (2014). https://doi.org/10.1007/s13369-014-1071-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1071-1

Keywords

Navigation